Metamath Proof Explorer


Theorem funcnvtp

Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvtp ( ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) ∧ ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ , ⟨ 𝐸 , 𝐹 ⟩ } )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) → 𝐴𝑈 )
2 simp2 ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) → 𝐶𝑉 )
3 simp1 ( ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) → 𝐵𝐷 )
4 funcnvpr ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } )
5 1 2 3 4 syl2an3an ( ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) ∧ ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } )
6 funcnvsn Fun { ⟨ 𝐸 , 𝐹 ⟩ }
7 6 a1i ( ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) ∧ ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) ) → Fun { ⟨ 𝐸 , 𝐹 ⟩ } )
8 df-rn ran { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ }
9 rnpropg ( ( 𝐴𝑈𝐶𝑉 ) → ran { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐵 , 𝐷 } )
10 8 9 eqtr3id ( ( 𝐴𝑈𝐶𝑉 ) → dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐵 , 𝐷 } )
11 10 3adant3 ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) → dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐵 , 𝐷 } )
12 df-rn ran { ⟨ 𝐸 , 𝐹 ⟩ } = dom { ⟨ 𝐸 , 𝐹 ⟩ }
13 rnsnopg ( 𝐸𝑊 → ran { ⟨ 𝐸 , 𝐹 ⟩ } = { 𝐹 } )
14 12 13 eqtr3id ( 𝐸𝑊 → dom { ⟨ 𝐸 , 𝐹 ⟩ } = { 𝐹 } )
15 14 3ad2ant3 ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) → dom { ⟨ 𝐸 , 𝐹 ⟩ } = { 𝐹 } )
16 11 15 ineq12d ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) → ( dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∩ dom { ⟨ 𝐸 , 𝐹 ⟩ } ) = ( { 𝐵 , 𝐷 } ∩ { 𝐹 } ) )
17 disjprsn ( ( 𝐵𝐹𝐷𝐹 ) → ( { 𝐵 , 𝐷 } ∩ { 𝐹 } ) = ∅ )
18 17 3adant1 ( ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) → ( { 𝐵 , 𝐷 } ∩ { 𝐹 } ) = ∅ )
19 16 18 sylan9eq ( ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) ∧ ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) ) → ( dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∩ dom { ⟨ 𝐸 , 𝐹 ⟩ } ) = ∅ )
20 funun ( ( ( Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∧ Fun { ⟨ 𝐸 , 𝐹 ⟩ } ) ∧ ( dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∩ dom { ⟨ 𝐸 , 𝐹 ⟩ } ) = ∅ ) → Fun ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } ) )
21 5 7 19 20 syl21anc ( ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) ∧ ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) ) → Fun ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } ) )
22 df-tp { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ , ⟨ 𝐸 , 𝐹 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } )
23 22 cnveqi { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ , ⟨ 𝐸 , 𝐹 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } )
24 cnvun ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } )
25 23 24 eqtri { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ , ⟨ 𝐸 , 𝐹 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } )
26 25 funeqi ( Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ , ⟨ 𝐸 , 𝐹 ⟩ } ↔ Fun ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ∪ { ⟨ 𝐸 , 𝐹 ⟩ } ) )
27 21 26 sylibr ( ( ( 𝐴𝑈𝐶𝑉𝐸𝑊 ) ∧ ( 𝐵𝐷𝐵𝐹𝐷𝐹 ) ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ , ⟨ 𝐸 , 𝐹 ⟩ } )