| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funmo |
⊢ ( Fun 𝐺 → ∃* 𝑧 𝑥 𝐺 𝑧 ) |
| 2 |
|
funmo |
⊢ ( Fun 𝐹 → ∃* 𝑦 𝑧 𝐹 𝑦 ) |
| 3 |
2
|
alrimiv |
⊢ ( Fun 𝐹 → ∀ 𝑧 ∃* 𝑦 𝑧 𝐹 𝑦 ) |
| 4 |
|
moexexvw |
⊢ ( ( ∃* 𝑧 𝑥 𝐺 𝑧 ∧ ∀ 𝑧 ∃* 𝑦 𝑧 𝐹 𝑦 ) → ∃* 𝑦 ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) |
| 5 |
1 3 4
|
syl2anr |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → ∃* 𝑦 ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) |
| 6 |
5
|
alrimiv |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → ∀ 𝑥 ∃* 𝑦 ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) |
| 7 |
|
funopab |
⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) } ↔ ∀ 𝑥 ∃* 𝑦 ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) } ) |
| 9 |
|
df-co |
⊢ ( 𝐹 ∘ 𝐺 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) } |
| 10 |
9
|
funeqi |
⊢ ( Fun ( 𝐹 ∘ 𝐺 ) ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) } ) |
| 11 |
8 10
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun ( 𝐹 ∘ 𝐺 ) ) |