Step |
Hyp |
Ref |
Expression |
1 |
|
df-fun |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) ) |
2 |
1
|
simprbi |
⊢ ( Fun 𝐹 → ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) |
3 |
|
iss |
⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ↔ ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ dom ( 𝐹 ∘ ◡ 𝐹 ) ) ) |
4 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
5 |
|
dmcoeq |
⊢ ( dom 𝐹 = ran ◡ 𝐹 → dom ( 𝐹 ∘ ◡ 𝐹 ) = dom ◡ 𝐹 ) |
6 |
4 5
|
ax-mp |
⊢ dom ( 𝐹 ∘ ◡ 𝐹 ) = dom ◡ 𝐹 |
7 |
|
df-rn |
⊢ ran 𝐹 = dom ◡ 𝐹 |
8 |
6 7
|
eqtr4i |
⊢ dom ( 𝐹 ∘ ◡ 𝐹 ) = ran 𝐹 |
9 |
8
|
reseq2i |
⊢ ( I ↾ dom ( 𝐹 ∘ ◡ 𝐹 ) ) = ( I ↾ ran 𝐹 ) |
10 |
9
|
eqeq2i |
⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ dom ( 𝐹 ∘ ◡ 𝐹 ) ) ↔ ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
11 |
3 10
|
bitri |
⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ↔ ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
12 |
2 11
|
sylib |
⊢ ( Fun 𝐹 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |