Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funcofd.1 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
funcofd.2 | ⊢ ( 𝜑 → Fun 𝐺 ) | ||
Assertion | funcofd | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcofd.1 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
2 | funcofd.2 | ⊢ ( 𝜑 → Fun 𝐺 ) | |
3 | fdmrn | ⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) | |
4 | 1 3 | sylib | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
5 | fcof | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 ∧ Fun 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) | |
6 | 4 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) |