Metamath Proof Explorer


Theorem funcofd

Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Hypotheses funcofd.1 ( 𝜑 → Fun 𝐹 )
funcofd.2 ( 𝜑 → Fun 𝐺 )
Assertion funcofd ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 funcofd.1 ( 𝜑 → Fun 𝐹 )
2 funcofd.2 ( 𝜑 → Fun 𝐺 )
3 fdmrn ( Fun 𝐹𝐹 : dom 𝐹 ⟶ ran 𝐹 )
4 1 3 sylib ( 𝜑𝐹 : dom 𝐹 ⟶ ran 𝐹 )
5 fcof ( ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 ∧ Fun 𝐺 ) → ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 )
6 4 2 5 syl2anc ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 )