Step |
Hyp |
Ref |
Expression |
1 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) ) |
2 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
3 |
2
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
4 |
3
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
5 |
1 4
|
bitr2di |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ ( 𝐹 “ 𝐴 ) ⊆ { 𝐵 } ) ) |
6 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ { 𝐵 } ↔ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) |
7 |
5 6
|
bitrd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) |