Metamath Proof Explorer


Theorem funconstss

Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion funconstss ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵𝐴 ⊆ ( 𝐹 “ { 𝐵 } ) ) )

Proof

Step Hyp Ref Expression
1 funimass4 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ { 𝐵 } ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ { 𝐵 } ) )
2 fvex ( 𝐹𝑥 ) ∈ V
3 2 elsn ( ( 𝐹𝑥 ) ∈ { 𝐵 } ↔ ( 𝐹𝑥 ) = 𝐵 )
4 3 ralbii ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ { 𝐵 } ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵 )
5 1 4 bitr2di ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵 ↔ ( 𝐹𝐴 ) ⊆ { 𝐵 } ) )
6 funimass3 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ { 𝐵 } ↔ 𝐴 ⊆ ( 𝐹 “ { 𝐵 } ) ) )
7 5 6 bitrd ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵𝐴 ⊆ ( 𝐹 “ { 𝐵 } ) ) )