Metamath Proof Explorer


Theorem funcpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functors. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses funcpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
funcpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
funcpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
funcpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
funcpropd.a ( 𝜑𝐴𝑉 )
funcpropd.b ( 𝜑𝐵𝑉 )
funcpropd.c ( 𝜑𝐶𝑉 )
funcpropd.d ( 𝜑𝐷𝑉 )
Assertion funcpropd ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 funcpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 funcpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 funcpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 funcpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 funcpropd.a ( 𝜑𝐴𝑉 )
6 funcpropd.b ( 𝜑𝐵𝑉 )
7 funcpropd.c ( 𝜑𝐶𝑉 )
8 funcpropd.d ( 𝜑𝐷𝑉 )
9 relfunc Rel ( 𝐴 Func 𝐶 )
10 relfunc Rel ( 𝐵 Func 𝐷 )
11 1 2 5 6 catpropd ( 𝜑 → ( 𝐴 ∈ Cat ↔ 𝐵 ∈ Cat ) )
12 3 4 7 8 catpropd ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) )
13 11 12 anbi12d ( 𝜑 → ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ↔ ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) )
14 2fveq3 ( 𝑧 = 𝑤 → ( 𝑓 ‘ ( 1st𝑧 ) ) = ( 𝑓 ‘ ( 1st𝑤 ) ) )
15 2fveq3 ( 𝑧 = 𝑤 → ( 𝑓 ‘ ( 2nd𝑧 ) ) = ( 𝑓 ‘ ( 2nd𝑤 ) ) )
16 14 15 oveq12d ( 𝑧 = 𝑤 → ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) )
17 fveq2 ( 𝑧 = 𝑤 → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) )
18 16 17 oveq12d ( 𝑧 = 𝑤 → ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) )
19 18 cbvixpv X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) )
20 19 eleq2i ( 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ↔ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) )
21 20 anbi2i ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) )
22 1 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
23 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( compf𝐴 ) = ( compf𝐵 ) )
24 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝐴𝑉 )
25 6 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝐵𝑉 )
26 22 23 24 25 cidpropd ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Id ‘ 𝐴 ) = ( Id ‘ 𝐵 ) )
27 26 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) )
28 27 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) )
29 3 4 7 8 cidpropd ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) )
30 29 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) )
31 30 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) )
32 28 31 eqeq12d ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ↔ ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ) )
33 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
34 eqid ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 )
35 eqid ( comp ‘ 𝐴 ) = ( comp ‘ 𝐴 )
36 eqid ( comp ‘ 𝐵 ) = ( comp ‘ 𝐵 )
37 1 ad6antr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
38 2 ad6antr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( compf𝐴 ) = ( compf𝐵 ) )
39 simp-5r ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) )
40 simp-4r ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) )
41 simpllr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) )
42 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) )
43 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) )
44 33 34 35 36 37 38 39 40 41 42 43 comfeqval ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) = ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) )
45 44 fveq2d ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) )
46 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
47 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
48 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
49 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
50 3 ad6antr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
51 4 ad6antr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
52 simprl ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
53 52 ad5antr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
54 53 39 ffvelrnd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓𝑥 ) ∈ ( Base ‘ 𝐶 ) )
55 53 40 ffvelrnd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓𝑦 ) ∈ ( Base ‘ 𝐶 ) )
56 53 41 ffvelrnd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓𝑧 ) ∈ ( Base ‘ 𝐶 ) )
57 df-ov ( 𝑥 𝑔 𝑦 ) = ( 𝑔 ‘ ⟨ 𝑥 , 𝑦 ⟩ )
58 simprr ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) )
59 58 ad5ant12 ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) )
60 59 adantr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) )
61 opelxpi ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) )
62 61 ad5ant23 ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) )
63 vex 𝑥 ∈ V
64 vex 𝑦 ∈ V
65 63 64 op1std ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑤 ) = 𝑥 )
66 65 fveq2d ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑓 ‘ ( 1st𝑤 ) ) = ( 𝑓𝑥 ) )
67 63 64 op2ndd ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑤 ) = 𝑦 )
68 67 fveq2d ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑓 ‘ ( 2nd𝑤 ) ) = ( 𝑓𝑦 ) )
69 66 68 oveq12d ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) )
70 fveq2 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( ( Hom ‘ 𝐴 ) ‘ ⟨ 𝑥 , 𝑦 ⟩ ) )
71 df-ov ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( ( Hom ‘ 𝐴 ) ‘ ⟨ 𝑥 , 𝑦 ⟩ )
72 70 71 eqtr4di ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) )
73 69 72 oveq12d ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) = ( ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) )
74 73 fvixp ( ( 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) )
75 60 62 74 syl2anc ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑔 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) )
76 57 75 eqeltrid ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) ∈ ( ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) )
77 elmapi ( ( 𝑥 𝑔 𝑦 ) ∈ ( ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) )
78 76 77 syl ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) )
79 78 adantr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) )
80 79 42 ffvelrnd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ∈ ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) )
81 df-ov ( 𝑦 𝑔 𝑧 ) = ( 𝑔 ‘ ⟨ 𝑦 , 𝑧 ⟩ )
82 opelxpi ( ( 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) )
83 82 adantll ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) )
84 vex 𝑧 ∈ V
85 64 84 op1std ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( 1st𝑤 ) = 𝑦 )
86 85 fveq2d ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑓 ‘ ( 1st𝑤 ) ) = ( 𝑓𝑦 ) )
87 64 84 op2ndd ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( 2nd𝑤 ) = 𝑧 )
88 87 fveq2d ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑓 ‘ ( 2nd𝑤 ) ) = ( 𝑓𝑧 ) )
89 86 88 oveq12d ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) = ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) )
90 fveq2 ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( ( Hom ‘ 𝐴 ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) )
91 df-ov ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ ⟨ 𝑦 , 𝑧 ⟩ )
92 90 91 eqtr4di ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) )
93 89 92 oveq12d ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) = ( ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) )
94 93 fvixp ( ( 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ∧ ⟨ 𝑦 , 𝑧 ⟩ ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ‘ ⟨ 𝑦 , 𝑧 ⟩ ) ∈ ( ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) )
95 59 83 94 syl2anc ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑔 ‘ ⟨ 𝑦 , 𝑧 ⟩ ) ∈ ( ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) )
96 81 95 eqeltrid ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 𝑔 𝑧 ) ∈ ( ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) )
97 elmapi ( ( 𝑦 𝑔 𝑧 ) ∈ ( ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) )
98 96 97 syl ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) )
99 98 adantr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) )
100 99 ffvelrnda ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ∈ ( ( 𝑓𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑧 ) ) )
101 46 47 48 49 50 51 54 55 56 80 100 comfeqval ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) )
102 45 101 eqeq12d ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
103 102 ralbidva ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
104 103 ralbidva ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
105 eqid ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 )
106 22 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
107 simpllr ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) )
108 simplr ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) )
109 33 34 105 106 107 108 homfeqval ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) )
110 simpr ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) )
111 33 34 105 106 108 110 homfeqval ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) )
112 111 raleqdv ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
113 109 112 raleqbidv ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
114 104 113 bitrd ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
115 114 ralbidva ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
116 115 ralbidva ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
117 32 116 anbi12d ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
118 117 ralbidva ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
119 21 118 sylan2b ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
120 119 pm5.32da ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
121 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
122 3 ad2antrr ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
123 simplr ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
124 xp1st ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → ( 1st𝑧 ) ∈ ( Base ‘ 𝐴 ) )
125 124 adantl ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 1st𝑧 ) ∈ ( Base ‘ 𝐴 ) )
126 123 125 ffvelrnd ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑓 ‘ ( 1st𝑧 ) ) ∈ ( Base ‘ 𝐶 ) )
127 xp2nd ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → ( 2nd𝑧 ) ∈ ( Base ‘ 𝐴 ) )
128 127 adantl ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 2nd𝑧 ) ∈ ( Base ‘ 𝐴 ) )
129 123 128 ffvelrnd ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑓 ‘ ( 2nd𝑧 ) ) ∈ ( Base ‘ 𝐶 ) )
130 46 47 121 122 126 129 homfeqval ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) )
131 1 ad2antrr ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
132 33 34 105 131 125 128 homfeqval ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( 1st𝑧 ) ( Hom ‘ 𝐴 ) ( 2nd𝑧 ) ) = ( ( 1st𝑧 ) ( Hom ‘ 𝐵 ) ( 2nd𝑧 ) ) )
133 df-ov ( ( 1st𝑧 ) ( Hom ‘ 𝐴 ) ( 2nd𝑧 ) ) = ( ( Hom ‘ 𝐴 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
134 df-ov ( ( 1st𝑧 ) ( Hom ‘ 𝐵 ) ( 2nd𝑧 ) ) = ( ( Hom ‘ 𝐵 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
135 132 133 134 3eqtr3g ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) = ( ( Hom ‘ 𝐵 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
136 1st2nd2 ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
137 136 adantl ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
138 137 fveq2d ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
139 137 fveq2d ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐵 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
140 135 138 139 3eqtr4d ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) )
141 130 140 oveq12d ( ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) )
142 141 ixpeq2dva ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) )
143 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
144 143 sqxpeqd ( 𝜑 → ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) = ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) )
145 144 adantr ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) = ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) )
146 145 ixpeq1d ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) )
147 142 146 eqtrd ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) )
148 147 eleq2d ( ( 𝜑𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → ( 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ↔ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) )
149 148 pm5.32da ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) )
150 3 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
151 143 150 feq23d ( 𝜑 → ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ↔ 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ) )
152 151 anbi1d ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) )
153 149 152 bitrd ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) )
154 143 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
155 154 raleqdv ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
156 154 155 raleqbidv ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) )
157 156 anbi2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
158 143 157 raleqbidva ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
159 153 158 anbi12d ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
160 120 159 bitrd ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
161 df-3an ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
162 df-3an ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) )
163 160 161 162 3bitr4g ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
164 13 163 anbi12d ( 𝜑 → ( ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ↔ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) )
165 df-br ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ⟨ 𝑓 , 𝑔 ⟩ ∈ ( 𝐴 Func 𝐶 ) )
166 funcrcl ( ⟨ 𝑓 , 𝑔 ⟩ ∈ ( 𝐴 Func 𝐶 ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) )
167 165 166 sylbi ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) )
168 eqid ( Id ‘ 𝐴 ) = ( Id ‘ 𝐴 )
169 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
170 simpl ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → 𝐴 ∈ Cat )
171 simpr ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat )
172 33 46 34 47 168 169 35 48 170 171 isfunc ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
173 167 172 biadanii ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
174 df-br ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ⟨ 𝑓 , 𝑔 ⟩ ∈ ( 𝐵 Func 𝐷 ) )
175 funcrcl ( ⟨ 𝑓 , 𝑔 ⟩ ∈ ( 𝐵 Func 𝐷 ) → ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) )
176 174 175 sylbi ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 → ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) )
177 eqid ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 )
178 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
179 eqid ( Id ‘ 𝐵 ) = ( Id ‘ 𝐵 )
180 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
181 simpl ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐵 ∈ Cat )
182 simpr ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat )
183 177 178 105 121 179 180 36 49 181 182 isfunc ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
184 176 183 biadanii ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
185 164 173 184 3bitr4g ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) )
186 9 10 185 eqbrrdiv ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )