Step |
Hyp |
Ref |
Expression |
1 |
|
funcpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
2 |
|
funcpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
3 |
|
funcpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
4 |
|
funcpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
5 |
|
funcpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
funcpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
7 |
|
funcpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
8 |
|
funcpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
9 |
|
relfunc |
⊢ Rel ( 𝐴 Func 𝐶 ) |
10 |
|
relfunc |
⊢ Rel ( 𝐵 Func 𝐷 ) |
11 |
1 2 5 6
|
catpropd |
⊢ ( 𝜑 → ( 𝐴 ∈ Cat ↔ 𝐵 ∈ Cat ) ) |
12 |
3 4 7 8
|
catpropd |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ↔ ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) ) |
14 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑤 → ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ) |
15 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑤 → ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) |
18 |
16 17
|
oveq12d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
19 |
18
|
cbvixpv |
⊢ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) |
20 |
19
|
eleq2i |
⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ↔ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
21 |
20
|
anbi2i |
⊢ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) |
22 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
23 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝐴 ∈ 𝑉 ) |
25 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝐵 ∈ 𝑉 ) |
26 |
22 23 24 25
|
cidpropd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Id ‘ 𝐴 ) = ( Id ‘ 𝐵 ) ) |
27 |
26
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) ) |
29 |
3 4 7 8
|
cidpropd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
31 |
30
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
32 |
28 31
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
34 |
|
eqid |
⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) |
35 |
|
eqid |
⊢ ( comp ‘ 𝐴 ) = ( comp ‘ 𝐴 ) |
36 |
|
eqid |
⊢ ( comp ‘ 𝐵 ) = ( comp ‘ 𝐵 ) |
37 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
38 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
39 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
40 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
41 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
42 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) |
43 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) |
44 |
33 34 35 36 37 38 39 40 41 42 43
|
comfeqval |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) = ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) ) |
46 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
47 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
48 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
49 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
50 |
3
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
51 |
4
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
52 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
53 |
52
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
54 |
53 39
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
55 |
53 40
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
56 |
53 41
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) ) |
57 |
|
df-ov |
⊢ ( 𝑥 𝑔 𝑦 ) = ( 𝑔 ‘ 〈 𝑥 , 𝑦 〉 ) |
58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
59 |
58
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
61 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) |
62 |
61
|
ad5ant23 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) |
63 |
|
vex |
⊢ 𝑥 ∈ V |
64 |
|
vex |
⊢ 𝑦 ∈ V |
65 |
63 64
|
op1std |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑤 ) = 𝑥 ) |
66 |
65
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
67 |
63 64
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑤 ) = 𝑦 ) |
68 |
67
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑦 ) ) |
69 |
66 68
|
oveq12d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
70 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
71 |
|
df-ov |
⊢ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
72 |
70 71
|
eqtr4di |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) |
73 |
69 72
|
oveq12d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) = ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
74 |
73
|
fvixp |
⊢ ( ( 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
75 |
60 62 74
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑔 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
76 |
57 75
|
eqeltrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
77 |
|
elmapi |
⊢ ( ( 𝑥 𝑔 𝑦 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
78 |
76 77
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
79 |
78
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
80 |
79 42
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ∈ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
81 |
|
df-ov |
⊢ ( 𝑦 𝑔 𝑧 ) = ( 𝑔 ‘ 〈 𝑦 , 𝑧 〉 ) |
82 |
|
opelxpi |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) |
83 |
82
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) |
84 |
|
vex |
⊢ 𝑧 ∈ V |
85 |
64 84
|
op1std |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 1st ‘ 𝑤 ) = 𝑦 ) |
86 |
85
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑦 ) ) |
87 |
64 84
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 2nd ‘ 𝑤 ) = 𝑧 ) |
88 |
87
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑧 ) ) |
89 |
86 88
|
oveq12d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
90 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑦 , 𝑧 〉 ) ) |
91 |
|
df-ov |
⊢ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑦 , 𝑧 〉 ) |
92 |
90 91
|
eqtr4di |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) |
93 |
89 92
|
oveq12d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) = ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
94 |
93
|
fvixp |
⊢ ( ( 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ∧ 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
95 |
59 83 94
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑔 ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
96 |
81 95
|
eqeltrid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 𝑔 𝑧 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
97 |
|
elmapi |
⊢ ( ( 𝑦 𝑔 𝑧 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
98 |
96 97
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
99 |
98
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
100 |
99
|
ffvelrnda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ∈ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
101 |
46 47 48 49 50 51 54 55 56 80 100
|
comfeqval |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
102 |
45 101
|
eqeq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
103 |
102
|
ralbidva |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
104 |
103
|
ralbidva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
105 |
|
eqid |
⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) |
106 |
22
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
107 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
108 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
109 |
33 34 105 106 107 108
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
110 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
111 |
33 34 105 106 108 110
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ) |
112 |
111
|
raleqdv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
113 |
109 112
|
raleqbidv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
114 |
104 113
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
115 |
114
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
116 |
115
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
117 |
32 116
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
118 |
117
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
119 |
21 118
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
120 |
119
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
121 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
122 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
123 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
124 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
125 |
124
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
126 |
123 125
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ∈ ( Base ‘ 𝐶 ) ) |
127 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
128 |
127
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
129 |
123 128
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ∈ ( Base ‘ 𝐶 ) ) |
130 |
46 47 121 122 126 129
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
131 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
132 |
33 34 105 131 125 128
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐴 ) ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐵 ) ( 2nd ‘ 𝑧 ) ) ) |
133 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐴 ) ( 2nd ‘ 𝑧 ) ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
134 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐵 ) ( 2nd ‘ 𝑧 ) ) = ( ( Hom ‘ 𝐵 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
135 |
132 133 134
|
3eqtr3g |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) = ( ( Hom ‘ 𝐵 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
136 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
137 |
136
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
138 |
137
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
139 |
137
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐵 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
140 |
135 138 139
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) |
141 |
130 140
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
142 |
141
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
143 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
144 |
143
|
sqxpeqd |
⊢ ( 𝜑 → ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) = ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) = ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ) |
146 |
145
|
ixpeq1d |
⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
147 |
142 146
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
148 |
147
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ↔ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) |
149 |
148
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) ) |
150 |
3
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
151 |
143 150
|
feq23d |
⊢ ( 𝜑 → ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ↔ 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ) ) |
152 |
151
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) ) |
153 |
149 152
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) ) |
154 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
155 |
154
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
156 |
154 155
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
157 |
156
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
158 |
143 157
|
raleqbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
159 |
153 158
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
160 |
120 159
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
161 |
|
df-3an |
⊢ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
162 |
|
df-3an |
⊢ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
163 |
160 161 162
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
164 |
13 163
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ↔ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) ) |
165 |
|
df-br |
⊢ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐴 Func 𝐶 ) ) |
166 |
|
funcrcl |
⊢ ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐴 Func 𝐶 ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
167 |
165 166
|
sylbi |
⊢ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
168 |
|
eqid |
⊢ ( Id ‘ 𝐴 ) = ( Id ‘ 𝐴 ) |
169 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
170 |
|
simpl |
⊢ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → 𝐴 ∈ Cat ) |
171 |
|
simpr |
⊢ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) |
172 |
33 46 34 47 168 169 35 48 170 171
|
isfunc |
⊢ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
173 |
167 172
|
biadanii |
⊢ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
174 |
|
df-br |
⊢ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐵 Func 𝐷 ) ) |
175 |
|
funcrcl |
⊢ ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐵 Func 𝐷 ) → ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
176 |
174 175
|
sylbi |
⊢ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 → ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
177 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
178 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
179 |
|
eqid |
⊢ ( Id ‘ 𝐵 ) = ( Id ‘ 𝐵 ) |
180 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
181 |
|
simpl |
⊢ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐵 ∈ Cat ) |
182 |
|
simpr |
⊢ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) |
183 |
177 178 105 121 179 180 36 49 181 182
|
isfunc |
⊢ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
184 |
176 183
|
biadanii |
⊢ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
185 |
164 173 184
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) ) |
186 |
9 10 185
|
eqbrrdiv |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |