Step |
Hyp |
Ref |
Expression |
1 |
|
funcres.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
2 |
|
funcres.h |
⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
3 |
1 2
|
resfval |
⊢ ( 𝜑 → ( 𝐹 ↾f 𝐻 ) = 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
4 |
3
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) = ( 2nd ‘ 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) ) |
5 |
|
fvex |
⊢ ( 1st ‘ 𝐹 ) ∈ V |
6 |
5
|
resex |
⊢ ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ∈ V |
7 |
|
dmexg |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom 𝐻 ∈ V ) |
8 |
|
mptexg |
⊢ ( dom 𝐻 ∈ V → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V ) |
9 |
2 7 8
|
3syl |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V ) |
10 |
|
op2ndg |
⊢ ( ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ∈ V ∧ ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V ) → ( 2nd ‘ 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
11 |
6 9 10
|
sylancr |
⊢ ( 𝜑 → ( 2nd ‘ 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
12 |
4 11
|
eqtrd |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
13 |
12
|
opeq2d |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
14 |
3 13
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾f 𝐻 ) = 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 〉 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) = ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
17 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) = ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) |
18 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
19 |
|
eqid |
⊢ ( Id ‘ ( 𝐶 ↾cat 𝐻 ) ) = ( Id ‘ ( 𝐶 ↾cat 𝐻 ) ) |
20 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
21 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) = ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) |
22 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
23 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) |
24 |
23 2
|
subccat |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) ∈ Cat ) |
25 |
|
funcrcl |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
26 |
1 25
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
27 |
26
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
29 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
30 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
31 |
29 1 30
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
32 |
28 16 31
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
33 |
|
eqidd |
⊢ ( 𝜑 → dom dom 𝐻 = dom dom 𝐻 ) |
34 |
2 33
|
subcfn |
⊢ ( 𝜑 → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
35 |
2 34 28
|
subcss1 |
⊢ ( 𝜑 → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) ) |
36 |
32 35
|
fssresd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) : dom dom 𝐻 ⟶ ( Base ‘ 𝐷 ) ) |
37 |
26
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
38 |
23 28 37 34 35
|
rescbas |
⊢ ( 𝜑 → dom dom 𝐻 = ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
39 |
38
|
feq2d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) : dom dom 𝐻 ⟶ ( Base ‘ 𝐷 ) ↔ ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) : ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ⟶ ( Base ‘ 𝐷 ) ) ) |
40 |
36 39
|
mpbid |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) : ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ⟶ ( Base ‘ 𝐷 ) ) |
41 |
|
fvex |
⊢ ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ∈ V |
42 |
41
|
resex |
⊢ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ∈ V |
43 |
|
eqid |
⊢ ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) |
44 |
42 43
|
fnmpti |
⊢ ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) Fn dom 𝐻 |
45 |
12
|
eqcomd |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) ) |
46 |
|
fndm |
⊢ ( 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) → dom 𝐻 = ( dom dom 𝐻 × dom dom 𝐻 ) ) |
47 |
34 46
|
syl |
⊢ ( 𝜑 → dom 𝐻 = ( dom dom 𝐻 × dom dom 𝐻 ) ) |
48 |
38
|
sqxpeqd |
⊢ ( 𝜑 → ( dom dom 𝐻 × dom dom 𝐻 ) = ( ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) × ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) |
49 |
47 48
|
eqtrd |
⊢ ( 𝜑 → dom 𝐻 = ( ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) × ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) |
50 |
45 49
|
fneq12d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) Fn dom 𝐻 ↔ ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) Fn ( ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) × ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) ) |
51 |
44 50
|
mpbii |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) Fn ( ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) × ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) |
52 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
53 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
54 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) ) |
55 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
56 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → dom dom 𝐻 = ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
57 |
55 56
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝑥 ∈ dom dom 𝐻 ) |
58 |
54 57
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
59 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
60 |
59 56
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝑦 ∈ dom dom 𝐻 ) |
61 |
54 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
62 |
28 52 18 53 58 61
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
63 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
64 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
65 |
63 64 52 57 60
|
subcss2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
66 |
62 65
|
fssresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
67 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
68 |
67 63 64 57 60
|
resf2nd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) |
69 |
68
|
feq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ↔ ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) ) |
70 |
66 69
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
71 |
23 28 37 34 35
|
reschom |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → 𝐻 = ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
73 |
72
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ) |
74 |
57
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) |
75 |
60
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) |
76 |
74 75
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) = ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
77 |
76
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) ) |
78 |
73 77
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ↔ ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ⟶ ( ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) ) ) |
79 |
70 78
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ⟶ ( ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) ) |
80 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
81 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
82 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
83 |
38
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom dom 𝐻 ↔ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ) |
84 |
83
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → 𝑥 ∈ dom dom 𝐻 ) |
85 |
80 81 82 84 84
|
resf2nd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑥 ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ) |
86 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
87 |
23 81 82 86 84
|
subcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( ( Id ‘ ( 𝐶 ↾cat 𝐻 ) ) ‘ 𝑥 ) ) |
88 |
87
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( Id ‘ ( 𝐶 ↾cat 𝐻 ) ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
89 |
85 88
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑥 ) ‘ ( ( Id ‘ ( 𝐶 ↾cat 𝐻 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
90 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
91 |
38 35
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
92 |
91
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
93 |
28 86 20 90 92
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ) |
94 |
81 82 84 86
|
subcidcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
95 |
94
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
96 |
84
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) |
97 |
96
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ) |
98 |
93 95 97
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ) ) |
99 |
89 98
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑥 ) ‘ ( ( Id ‘ ( 𝐶 ↾cat 𝐻 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ) ) |
100 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
101 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
102 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
103 |
38
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → dom dom 𝐻 = ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
104 |
102 103
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑥 ∈ dom dom 𝐻 ) |
105 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
106 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
107 |
106 103
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑦 ∈ dom dom 𝐻 ) |
108 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
109 |
108 103
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑧 ∈ dom dom 𝐻 ) |
110 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ) |
111 |
71
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝐻 = ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
112 |
111
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ) |
113 |
110 112
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
114 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) |
115 |
111
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) |
116 |
114 115
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) |
117 |
100 101 104 105 107 109 113 116
|
subccocl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
118 |
117
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
119 |
31
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
120 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) ) |
121 |
120 104
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
122 |
120 107
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
123 |
120 109
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
124 |
100 101 52 104 107
|
subcss2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
125 |
124 113
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
126 |
100 101 52 107 109
|
subcss2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑦 𝐻 𝑧 ) ⊆ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
127 |
126 116
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
128 |
28 52 105 22 119 121 122 123 125 127
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) |
129 |
118 128
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) |
130 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
131 |
130 100 101 104 109
|
resf2nd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ) |
132 |
23 28 37 34 35 105
|
rescco |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
133 |
132
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) ) |
134 |
133
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) = ( comp ‘ 𝐶 ) ) |
135 |
134
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ) |
136 |
135
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
137 |
131 136
|
fveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
138 |
104
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) |
139 |
107
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) |
140 |
138 139
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → 〈 ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ) |
141 |
109
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) |
142 |
140 141
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 〈 ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ) |
143 |
130 100 101 107 109
|
resf2nd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑦 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) = ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑦 𝐻 𝑧 ) ) ) |
144 |
143
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) = ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑦 𝐻 𝑧 ) ) ‘ 𝑔 ) ) |
145 |
116
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ↾ ( 𝑦 𝐻 𝑧 ) ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ) |
146 |
144 145
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ) |
147 |
130 100 101 104 107
|
resf2nd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) |
148 |
147
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ‘ 𝑓 ) ) |
149 |
113
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) |
150 |
148 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) |
151 |
142 146 150
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) |
152 |
129 137 151
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶 ↾cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾cat 𝐻 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) ) ) |
153 |
15 16 17 18 19 20 21 22 24 27 40 51 79 99 152
|
isfuncd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ( ( 𝐶 ↾cat 𝐻 ) Func 𝐷 ) ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) ) |
154 |
|
df-br |
⊢ ( ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) ( ( 𝐶 ↾cat 𝐻 ) Func 𝐷 ) ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) ↔ 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 〉 ∈ ( ( 𝐶 ↾cat 𝐻 ) Func 𝐷 ) ) |
155 |
153 154
|
sylib |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ 𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹 ↾f 𝐻 ) ) 〉 ∈ ( ( 𝐶 ↾cat 𝐻 ) Func 𝐷 ) ) |
156 |
14 155
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾f 𝐻 ) ∈ ( ( 𝐶 ↾cat 𝐻 ) Func 𝐷 ) ) |