Metamath Proof Explorer


Theorem funcres

Description: A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses funcres.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
funcres.h ( 𝜑𝐻 ∈ ( Subcat ‘ 𝐶 ) )
Assertion funcres ( 𝜑 → ( 𝐹f 𝐻 ) ∈ ( ( 𝐶cat 𝐻 ) Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 funcres.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
2 funcres.h ( 𝜑𝐻 ∈ ( Subcat ‘ 𝐶 ) )
3 1 2 resfval ( 𝜑 → ( 𝐹f 𝐻 ) = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ )
4 3 fveq2d ( 𝜑 → ( 2nd ‘ ( 𝐹f 𝐻 ) ) = ( 2nd ‘ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ ) )
5 fvex ( 1st𝐹 ) ∈ V
6 5 resex ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ∈ V
7 dmexg ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom 𝐻 ∈ V )
8 mptexg ( dom 𝐻 ∈ V → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ∈ V )
9 2 7 8 3syl ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ∈ V )
10 op2ndg ( ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ∈ V ∧ ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ∈ V ) → ( 2nd ‘ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) )
11 6 9 10 sylancr ( 𝜑 → ( 2nd ‘ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) )
12 4 11 eqtrd ( 𝜑 → ( 2nd ‘ ( 𝐹f 𝐻 ) ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) )
13 12 opeq2d ( 𝜑 → ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹f 𝐻 ) ) ⟩ = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ )
14 3 13 eqtr4d ( 𝜑 → ( 𝐹f 𝐻 ) = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹f 𝐻 ) ) ⟩ )
15 eqid ( Base ‘ ( 𝐶cat 𝐻 ) ) = ( Base ‘ ( 𝐶cat 𝐻 ) )
16 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
17 eqid ( Hom ‘ ( 𝐶cat 𝐻 ) ) = ( Hom ‘ ( 𝐶cat 𝐻 ) )
18 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
19 eqid ( Id ‘ ( 𝐶cat 𝐻 ) ) = ( Id ‘ ( 𝐶cat 𝐻 ) )
20 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
21 eqid ( comp ‘ ( 𝐶cat 𝐻 ) ) = ( comp ‘ ( 𝐶cat 𝐻 ) )
22 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
23 eqid ( 𝐶cat 𝐻 ) = ( 𝐶cat 𝐻 )
24 23 2 subccat ( 𝜑 → ( 𝐶cat 𝐻 ) ∈ Cat )
25 funcrcl ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
26 1 25 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
27 26 simprd ( 𝜑𝐷 ∈ Cat )
28 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
29 relfunc Rel ( 𝐶 Func 𝐷 )
30 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
31 29 1 30 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
32 28 16 31 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
33 eqidd ( 𝜑 → dom dom 𝐻 = dom dom 𝐻 )
34 2 33 subcfn ( 𝜑𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) )
35 2 34 28 subcss1 ( 𝜑 → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) )
36 32 35 fssresd ( 𝜑 → ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) : dom dom 𝐻 ⟶ ( Base ‘ 𝐷 ) )
37 26 simpld ( 𝜑𝐶 ∈ Cat )
38 23 28 37 34 35 rescbas ( 𝜑 → dom dom 𝐻 = ( Base ‘ ( 𝐶cat 𝐻 ) ) )
39 38 feq2d ( 𝜑 → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) : dom dom 𝐻 ⟶ ( Base ‘ 𝐷 ) ↔ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) : ( Base ‘ ( 𝐶cat 𝐻 ) ) ⟶ ( Base ‘ 𝐷 ) ) )
40 36 39 mpbid ( 𝜑 → ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) : ( Base ‘ ( 𝐶cat 𝐻 ) ) ⟶ ( Base ‘ 𝐷 ) )
41 fvex ( ( 2nd𝐹 ) ‘ 𝑧 ) ∈ V
42 41 resex ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ∈ V
43 eqid ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) = ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) )
44 42 43 fnmpti ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) Fn dom 𝐻
45 12 eqcomd ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) = ( 2nd ‘ ( 𝐹f 𝐻 ) ) )
46 fndm ( 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) → dom 𝐻 = ( dom dom 𝐻 × dom dom 𝐻 ) )
47 34 46 syl ( 𝜑 → dom 𝐻 = ( dom dom 𝐻 × dom dom 𝐻 ) )
48 38 sqxpeqd ( 𝜑 → ( dom dom 𝐻 × dom dom 𝐻 ) = ( ( Base ‘ ( 𝐶cat 𝐻 ) ) × ( Base ‘ ( 𝐶cat 𝐻 ) ) ) )
49 47 48 eqtrd ( 𝜑 → dom 𝐻 = ( ( Base ‘ ( 𝐶cat 𝐻 ) ) × ( Base ‘ ( 𝐶cat 𝐻 ) ) ) )
50 45 49 fneq12d ( 𝜑 → ( ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) Fn dom 𝐻 ↔ ( 2nd ‘ ( 𝐹f 𝐻 ) ) Fn ( ( Base ‘ ( 𝐶cat 𝐻 ) ) × ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) )
51 44 50 mpbii ( 𝜑 → ( 2nd ‘ ( 𝐹f 𝐻 ) ) Fn ( ( Base ‘ ( 𝐶cat 𝐻 ) ) × ( Base ‘ ( 𝐶cat 𝐻 ) ) ) )
52 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
53 31 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
54 35 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) )
55 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) )
56 38 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → dom dom 𝐻 = ( Base ‘ ( 𝐶cat 𝐻 ) ) )
57 55 56 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝑥 ∈ dom dom 𝐻 )
58 54 57 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
59 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) )
60 59 56 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝑦 ∈ dom dom 𝐻 )
61 54 60 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
62 28 52 18 53 58 61 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
63 2 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) )
64 34 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) )
65 63 64 52 57 60 subcss2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
66 62 65 fssresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
67 1 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
68 67 63 64 57 60 resf2nd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) )
69 68 feq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ↔ ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
70 66 69 mpbird ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
71 23 28 37 34 35 reschom ( 𝜑𝐻 = ( Hom ‘ ( 𝐶cat 𝐻 ) ) )
72 71 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → 𝐻 = ( Hom ‘ ( 𝐶cat 𝐻 ) ) )
73 72 oveqd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) )
74 57 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ 𝑥 ) )
75 60 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) = ( ( 1st𝐹 ) ‘ 𝑦 ) )
76 74 75 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) = ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
77 76 eqcomd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) )
78 73 77 feq23d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ↔ ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ⟶ ( ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) ) )
79 70 78 mpbid ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ⟶ ( ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ) )
80 1 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
81 2 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) )
82 34 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) )
83 38 eleq2d ( 𝜑 → ( 𝑥 ∈ dom dom 𝐻𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) )
84 83 biimpar ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → 𝑥 ∈ dom dom 𝐻 )
85 80 81 82 84 84 resf2nd ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑥 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) )
86 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
87 23 81 82 86 84 subcid ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( ( Id ‘ ( 𝐶cat 𝐻 ) ) ‘ 𝑥 ) )
88 87 eqcomd ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( Id ‘ ( 𝐶cat 𝐻 ) ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) )
89 85 88 fveq12d ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑥 ) ‘ ( ( Id ‘ ( 𝐶cat 𝐻 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) )
90 31 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
91 38 35 eqsstrrd ( 𝜑 → ( Base ‘ ( 𝐶cat 𝐻 ) ) ⊆ ( Base ‘ 𝐶 ) )
92 91 sselda ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
93 28 86 20 90 92 funcid ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( 𝑥 ( 2nd𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
94 81 82 84 86 subcidcl ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) )
95 94 fvresd ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( ( 𝑥 ( 2nd𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) )
96 84 fvresd ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ 𝑥 ) )
97 96 fveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
98 93 95 97 3eqtr4d ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( ( 𝑥 ( 2nd𝐹 ) 𝑥 ) ↾ ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ) )
99 89 98 eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑥 ) ‘ ( ( Id ‘ ( 𝐶cat 𝐻 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) ) )
100 2 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) )
101 34 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) )
102 simp21 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) )
103 38 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → dom dom 𝐻 = ( Base ‘ ( 𝐶cat 𝐻 ) ) )
104 102 103 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑥 ∈ dom dom 𝐻 )
105 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
106 simp22 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) )
107 106 103 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑦 ∈ dom dom 𝐻 )
108 simp23 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) )
109 108 103 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑧 ∈ dom dom 𝐻 )
110 simp3l ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) )
111 71 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝐻 = ( Hom ‘ ( 𝐶cat 𝐻 ) ) )
112 111 oveqd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) )
113 110 112 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
114 simp3r ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) )
115 111 oveqd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) )
116 114 115 eleqtrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) )
117 100 101 104 105 107 109 113 116 subccocl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) )
118 117 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑥 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) )
119 31 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
120 35 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) )
121 120 104 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
122 120 107 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
123 120 109 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
124 100 101 52 104 107 subcss2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
125 124 113 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
126 100 101 52 107 109 subcss2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑦 𝐻 𝑧 ) ⊆ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
127 126 116 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
128 28 52 105 22 119 121 122 123 125 127 funcco ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝐹 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )
129 118 128 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑥 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )
130 1 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
131 130 100 101 104 109 resf2nd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) )
132 23 28 37 34 35 105 rescco ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶cat 𝐻 ) ) )
133 132 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶cat 𝐻 ) ) )
134 133 eqcomd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( comp ‘ ( 𝐶cat 𝐻 ) ) = ( comp ‘ 𝐶 ) )
135 134 oveqd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) = ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) )
136 135 oveqd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) )
137 131 136 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) )
138 104 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ 𝑥 ) )
139 107 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) = ( ( 1st𝐹 ) ‘ 𝑦 ) )
140 138 139 opeq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ⟨ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ )
141 109 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) = ( ( 1st𝐹 ) ‘ 𝑧 ) )
142 140 141 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ⟨ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) )
143 130 100 101 107 109 resf2nd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑦 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) = ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑦 𝐻 𝑧 ) ) )
144 143 fveq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑦 𝐻 𝑧 ) ) ‘ 𝑔 ) )
145 116 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ↾ ( 𝑦 𝐻 𝑧 ) ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑔 ) )
146 144 145 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑔 ) )
147 130 100 101 104 107 resf2nd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) )
148 147 fveq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ‘ 𝑓 ) )
149 113 fvresd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) )
150 148 149 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) )
151 142 146 150 oveq123d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )
152 129 137 151 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ∧ 𝑧 ∈ ( Base ‘ ( 𝐶cat 𝐻 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝐶cat 𝐻 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑥 ) , ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ ( 𝐹f 𝐻 ) ) 𝑦 ) ‘ 𝑓 ) ) )
153 15 16 17 18 19 20 21 22 24 27 40 51 79 99 152 isfuncd ( 𝜑 → ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ( ( 𝐶cat 𝐻 ) Func 𝐷 ) ( 2nd ‘ ( 𝐹f 𝐻 ) ) )
154 df-br ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ( ( 𝐶cat 𝐻 ) Func 𝐷 ) ( 2nd ‘ ( 𝐹f 𝐻 ) ) ↔ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹f 𝐻 ) ) ⟩ ∈ ( ( 𝐶cat 𝐻 ) Func 𝐷 ) )
155 153 154 sylib ( 𝜑 → ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 2nd ‘ ( 𝐹f 𝐻 ) ) ⟩ ∈ ( ( 𝐶cat 𝐻 ) Func 𝐷 ) )
156 14 155 eqeltrd ( 𝜑 → ( 𝐹f 𝐻 ) ∈ ( ( 𝐶cat 𝐻 ) Func 𝐷 ) )