| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcres.f | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							funcres.h | 
							⊢ ( 𝜑  →  𝐻  ∈  ( Subcat ‘ 𝐶 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							resfval | 
							⊢ ( 𝜑  →  ( 𝐹  ↾f  𝐻 )  =  〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉 )  | 
						
						
							| 4 | 
							
								3
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) )  =  ( 2nd  ‘ 〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fvex | 
							⊢ ( 1st  ‘ 𝐹 )  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							resex | 
							⊢ ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 )  ∈  V  | 
						
						
							| 7 | 
							
								
							 | 
							dmexg | 
							⊢ ( 𝐻  ∈  ( Subcat ‘ 𝐶 )  →  dom  𝐻  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							mptexg | 
							⊢ ( dom  𝐻  ∈  V  →  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  ∈  V )  | 
						
						
							| 9 | 
							
								2 7 8
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  ∈  V )  | 
						
						
							| 10 | 
							
								
							 | 
							op2ndg | 
							⊢ ( ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 )  ∈  V  ∧  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  ∈  V )  →  ( 2nd  ‘ 〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉 )  =  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) )  | 
						
						
							| 11 | 
							
								6 9 10
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2nd  ‘ 〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉 )  =  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) )  =  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							opeq2d | 
							⊢ ( 𝜑  →  〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 〉  =  〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉 )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( 𝐹  ↾f  𝐻 )  =  〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 〉 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  =  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) )  =  ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ ( 𝐶  ↾cat  𝐻 ) )  =  ( Id ‘ ( 𝐶  ↾cat  𝐻 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝐷 )  =  ( Id ‘ 𝐷 )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ ( 𝐶  ↾cat  𝐻 ) )  =  ( comp ‘ ( 𝐶  ↾cat  𝐻 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝐷 )  =  ( comp ‘ 𝐷 )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  ↾cat  𝐻 )  =  ( 𝐶  ↾cat  𝐻 )  | 
						
						
							| 24 | 
							
								23 2
							 | 
							subccat | 
							⊢ ( 𝜑  →  ( 𝐶  ↾cat  𝐻 )  ∈  Cat )  | 
						
						
							| 25 | 
							
								
							 | 
							funcrcl | 
							⊢ ( 𝐹  ∈  ( 𝐶  Func  𝐷 )  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) )  | 
						
						
							| 26 | 
							
								1 25
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 29 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐶  Func  𝐷 )  | 
						
						
							| 30 | 
							
								
							 | 
							1st2ndbr | 
							⊢ ( ( Rel  ( 𝐶  Func  𝐷 )  ∧  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  →  ( 1st  ‘ 𝐹 ) ( 𝐶  Func  𝐷 ) ( 2nd  ‘ 𝐹 ) )  | 
						
						
							| 31 | 
							
								29 1 30
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 1st  ‘ 𝐹 ) ( 𝐶  Func  𝐷 ) ( 2nd  ‘ 𝐹 ) )  | 
						
						
							| 32 | 
							
								28 16 31
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  ( 1st  ‘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  dom  dom  𝐻  =  dom  dom  𝐻 )  | 
						
						
							| 34 | 
							
								2 33
							 | 
							subcfn | 
							⊢ ( 𝜑  →  𝐻  Fn  ( dom  dom  𝐻  ×  dom  dom  𝐻 ) )  | 
						
						
							| 35 | 
							
								2 34 28
							 | 
							subcss1 | 
							⊢ ( 𝜑  →  dom  dom  𝐻  ⊆  ( Base ‘ 𝐶 ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) : dom  dom  𝐻 ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 37 | 
							
								26
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 38 | 
							
								23 28 37 34 35
							 | 
							rescbas | 
							⊢ ( 𝜑  →  dom  dom  𝐻  =  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							feq2d | 
							⊢ ( 𝜑  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) : dom  dom  𝐻 ⟶ ( Base ‘ 𝐷 )  ↔  ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) : ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ⟶ ( Base ‘ 𝐷 ) ) )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) : ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fvex | 
							⊢ ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ∈  V  | 
						
						
							| 42 | 
							
								41
							 | 
							resex | 
							⊢ ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) )  ∈  V  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							fnmpti | 
							⊢ ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  Fn  dom  𝐻  | 
						
						
							| 45 | 
							
								12
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  =  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝐻  Fn  ( dom  dom  𝐻  ×  dom  dom  𝐻 )  →  dom  𝐻  =  ( dom  dom  𝐻  ×  dom  dom  𝐻 ) )  | 
						
						
							| 47 | 
							
								34 46
							 | 
							syl | 
							⊢ ( 𝜑  →  dom  𝐻  =  ( dom  dom  𝐻  ×  dom  dom  𝐻 ) )  | 
						
						
							| 48 | 
							
								38
							 | 
							sqxpeqd | 
							⊢ ( 𝜑  →  ( dom  dom  𝐻  ×  dom  dom  𝐻 )  =  ( ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ×  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  dom  𝐻  =  ( ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ×  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  | 
						
						
							| 50 | 
							
								45 49
							 | 
							fneq12d | 
							⊢ ( 𝜑  →  ( ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 𝐹 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  Fn  dom  𝐻  ↔  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) )  Fn  ( ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ×  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) ) )  | 
						
						
							| 51 | 
							
								44 50
							 | 
							mpbii | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) )  Fn  ( ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ×  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 53 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 1st  ‘ 𝐹 ) ( 𝐶  Func  𝐷 ) ( 2nd  ‘ 𝐹 ) )  | 
						
						
							| 54 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  dom  dom  𝐻  ⊆  ( Base ‘ 𝐶 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 56 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  dom  dom  𝐻  =  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝑥  ∈  dom  dom  𝐻 )  | 
						
						
							| 58 | 
							
								54 57
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 60 | 
							
								59 56
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝑦  ∈  dom  dom  𝐻 )  | 
						
						
							| 61 | 
							
								54 60
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝑦  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 62 | 
							
								28 52 18 53 58 61
							 | 
							funcf2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 ) : ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) ) )  | 
						
						
							| 63 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝐻  ∈  ( Subcat ‘ 𝐶 ) )  | 
						
						
							| 64 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝐻  Fn  ( dom  dom  𝐻  ×  dom  dom  𝐻 ) )  | 
						
						
							| 65 | 
							
								63 64 52 57 60
							 | 
							subcss2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 𝑥 𝐻 𝑦 )  ⊆  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							fssresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) ) )  | 
						
						
							| 67 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 68 | 
							
								67 63 64 57 60
							 | 
							resf2nd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							feq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) )  ↔  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 70 | 
							
								66 69
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) ) )  | 
						
						
							| 71 | 
							
								23 28 37 34 35
							 | 
							reschom | 
							⊢ ( 𝜑  →  𝐻  =  ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  𝐻  =  ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							oveqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 ) )  | 
						
						
							| 74 | 
							
								57
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 )  =  ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) )  | 
						
						
							| 75 | 
							
								60
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 )  =  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) )  =  ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) )  =  ( ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) ) )  | 
						
						
							| 78 | 
							
								73 77
							 | 
							feq23d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) )  ↔  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) : ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 ) ⟶ ( ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 79 | 
							
								70 78
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  →  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) : ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 ) ⟶ ( ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ( Hom  ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) ) )  | 
						
						
							| 80 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 81 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  𝐻  ∈  ( Subcat ‘ 𝐶 ) )  | 
						
						
							| 82 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  𝐻  Fn  ( dom  dom  𝐻  ×  dom  dom  𝐻 ) )  | 
						
						
							| 83 | 
							
								38
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  dom  dom  𝐻  ↔  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							biimpar | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  𝑥  ∈  dom  dom  𝐻 )  | 
						
						
							| 85 | 
							
								80 81 82 84 84
							 | 
							resf2nd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑥 )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑥 )  ↾  ( 𝑥 𝐻 𝑥 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 )  | 
						
						
							| 87 | 
							
								23 81 82 86 84
							 | 
							subcid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  =  ( ( Id ‘ ( 𝐶  ↾cat  𝐻 ) ) ‘ 𝑥 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( Id ‘ ( 𝐶  ↾cat  𝐻 ) ) ‘ 𝑥 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) )  | 
						
						
							| 89 | 
							
								85 88
							 | 
							fveq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑥 ) ‘ ( ( Id ‘ ( 𝐶  ↾cat  𝐻 ) ) ‘ 𝑥 ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑥 )  ↾  ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) )  | 
						
						
							| 90 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( 1st  ‘ 𝐹 ) ( 𝐶  Func  𝐷 ) ( 2nd  ‘ 𝐹 ) )  | 
						
						
							| 91 | 
							
								38 35
							 | 
							eqsstrrd | 
							⊢ ( 𝜑  →  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ⊆  ( Base ‘ 𝐶 ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 93 | 
							
								28 86 20 90 92
							 | 
							funcid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝐷 ) ‘ ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ) )  | 
						
						
							| 94 | 
							
								81 82 84 86
							 | 
							subcidcl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( Id ‘ 𝐶 ) ‘ 𝑥 )  ∈  ( 𝑥 𝐻 𝑥 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑥 )  ↾  ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) )  | 
						
						
							| 96 | 
							
								84
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 )  =  ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝐷 ) ‘ ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ) )  | 
						
						
							| 98 | 
							
								93 95 97
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑥 )  ↾  ( 𝑥 𝐻 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ) )  | 
						
						
							| 99 | 
							
								89 98
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑥 ) ‘ ( ( Id ‘ ( 𝐶  ↾cat  𝐻 ) ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝐷 ) ‘ ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ) )  | 
						
						
							| 100 | 
							
								2
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝐻  ∈  ( Subcat ‘ 𝐶 ) )  | 
						
						
							| 101 | 
							
								34
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝐻  Fn  ( dom  dom  𝐻  ×  dom  dom  𝐻 ) )  | 
						
						
							| 102 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 103 | 
							
								38
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  dom  dom  𝐻  =  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 104 | 
							
								102 103
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑥  ∈  dom  dom  𝐻 )  | 
						
						
							| 105 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 )  | 
						
						
							| 106 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 107 | 
							
								106 103
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑦  ∈  dom  dom  𝐻 )  | 
						
						
							| 108 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 109 | 
							
								108 103
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑧  ∈  dom  dom  𝐻 )  | 
						
						
							| 110 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 ) )  | 
						
						
							| 111 | 
							
								71
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝐻  =  ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							oveqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 ) )  | 
						
						
							| 113 | 
							
								110 112
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  | 
						
						
							| 114 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) )  | 
						
						
							| 115 | 
							
								111
							 | 
							oveqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑦 𝐻 𝑧 )  =  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) )  | 
						
						
							| 116 | 
							
								114 115
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑔  ∈  ( 𝑦 𝐻 𝑧 ) )  | 
						
						
							| 117 | 
							
								100 101 104 105 107 109 113 116
							 | 
							subccocl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) )  | 
						
						
							| 119 | 
							
								31
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 1st  ‘ 𝐹 ) ( 𝐶  Func  𝐷 ) ( 2nd  ‘ 𝐹 ) )  | 
						
						
							| 120 | 
							
								35
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  dom  dom  𝐻  ⊆  ( Base ‘ 𝐶 ) )  | 
						
						
							| 121 | 
							
								120 104
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 122 | 
							
								120 107
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑦  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 123 | 
							
								120 109
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑧  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 124 | 
							
								100 101 52 104 107
							 | 
							subcss2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑥 𝐻 𝑦 )  ⊆  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) )  | 
						
						
							| 125 | 
							
								124 113
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) )  | 
						
						
							| 126 | 
							
								100 101 52 107 109
							 | 
							subcss2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑦 𝐻 𝑧 )  ⊆  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  | 
						
						
							| 127 | 
							
								126 116
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  | 
						
						
							| 128 | 
							
								28 52 105 22 119 121 122 123 125 127
							 | 
							funcco | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) )  =  ( ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ,  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )  | 
						
						
							| 129 | 
							
								118 128
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) )  =  ( ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ,  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )  | 
						
						
							| 130 | 
							
								1
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 131 | 
							
								130 100 101 104 109
							 | 
							resf2nd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑥 𝐻 𝑧 ) ) )  | 
						
						
							| 132 | 
							
								23 28 37 34 35 105
							 | 
							rescco | 
							⊢ ( 𝜑  →  ( comp ‘ 𝐶 )  =  ( comp ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( comp ‘ 𝐶 )  =  ( comp ‘ ( 𝐶  ↾cat  𝐻 ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( comp ‘ ( 𝐶  ↾cat  𝐻 ) )  =  ( comp ‘ 𝐶 ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							oveqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 )  =  ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							oveqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) )  | 
						
						
							| 137 | 
							
								131 136
							 | 
							fveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) 𝑓 ) )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑥 𝐻 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) )  | 
						
						
							| 138 | 
							
								104
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 )  =  ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) )  | 
						
						
							| 139 | 
							
								107
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 )  =  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							opeq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  〈 ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ,  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) 〉  =  〈 ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ,  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) 〉 )  | 
						
						
							| 141 | 
							
								109
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑧 )  =  ( ( 1st  ‘ 𝐹 ) ‘ 𝑧 ) )  | 
						
						
							| 142 | 
							
								140 141
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 〈 ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ,  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑧 ) )  =  ( 〈 ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ,  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑧 ) ) )  | 
						
						
							| 143 | 
							
								130 100 101 107 109
							 | 
							resf2nd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑦 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 )  =  ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑦 𝐻 𝑧 ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							fveq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑦 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 ) ‘ 𝑔 )  =  ( ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑦 𝐻 𝑧 ) ) ‘ 𝑔 ) )  | 
						
						
							| 145 | 
							
								116
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 )  ↾  ( 𝑦 𝐻 𝑧 ) ) ‘ 𝑔 )  =  ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) )  | 
						
						
							| 146 | 
							
								144 145
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑦 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 ) ‘ 𝑔 )  =  ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) )  | 
						
						
							| 147 | 
							
								130 100 101 104 107
							 | 
							resf2nd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							fveq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) ‘ 𝑓 )  =  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) ‘ 𝑓 ) )  | 
						
						
							| 149 | 
							
								113
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) ‘ 𝑓 )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) )  | 
						
						
							| 150 | 
							
								148 149
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) ‘ 𝑓 )  =  ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) )  | 
						
						
							| 151 | 
							
								142 146 150
							 | 
							oveq123d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( ( 𝑦 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ,  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) ‘ 𝑓 ) )  =  ( ( ( 𝑦 ( 2nd  ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st  ‘ 𝐹 ) ‘ 𝑥 ) ,  ( ( 1st  ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st  ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd  ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )  | 
						
						
							| 152 | 
							
								129 137 151
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) )  ∧  𝑧  ∈  ( Base ‘ ( 𝐶  ↾cat  𝐻 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ ( 𝐶  ↾cat  𝐻 ) ) 𝑧 ) 𝑓 ) )  =  ( ( ( 𝑦 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑥 ) ,  ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 𝑦 ) ‘ 𝑓 ) ) )  | 
						
						
							| 153 | 
							
								15 16 17 18 19 20 21 22 24 27 40 51 79 99 152
							 | 
							isfuncd | 
							⊢ ( 𝜑  →  ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ( ( 𝐶  ↾cat  𝐻 )  Func  𝐷 ) ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) )  | 
						
						
							| 154 | 
							
								
							 | 
							df-br | 
							⊢ ( ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ( ( 𝐶  ↾cat  𝐻 )  Func  𝐷 ) ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) )  ↔  〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 〉  ∈  ( ( 𝐶  ↾cat  𝐻 )  Func  𝐷 ) )  | 
						
						
							| 155 | 
							
								153 154
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 ( ( 1st  ‘ 𝐹 )  ↾  dom  dom  𝐻 ) ,  ( 2nd  ‘ ( 𝐹  ↾f  𝐻 ) ) 〉  ∈  ( ( 𝐶  ↾cat  𝐻 )  Func  𝐷 ) )  | 
						
						
							| 156 | 
							
								14 155
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾f  𝐻 )  ∈  ( ( 𝐶  ↾cat  𝐻 )  Func  𝐷 ) )  |