Step |
Hyp |
Ref |
Expression |
1 |
|
funcres2c.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
2 |
|
funcres2c.e |
⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) |
3 |
|
funcres2c.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
funcres2c.r |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
5 |
|
funcres2c.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
6 |
|
orc |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ) |
8 |
|
olc |
⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
12 |
|
eqid |
⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) |
13 |
|
inss2 |
⊢ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) ) |
15 |
11 12 3 14
|
fullsubc |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ∈ ( Subcat ‘ 𝐷 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ∈ ( Subcat ‘ 𝐷 ) ) |
17 |
12 11
|
homffn |
⊢ ( Homf ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) |
18 |
|
xpss12 |
⊢ ( ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) ∧ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) ) → ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
19 |
13 13 18
|
mp2an |
⊢ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) |
20 |
|
fnssres |
⊢ ( ( ( Homf ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ∧ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) Fn ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
21 |
17 19 20
|
mp2an |
⊢ ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) Fn ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) Fn ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
24 |
23
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐹 Fn 𝐴 ) |
25 |
23
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ran 𝐹 ⊆ 𝑆 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
27 |
1 11 26
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ) |
28 |
27
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) |
31 |
1 29 30
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐸 ) ) |
32 |
31
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ran 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
33 |
2 11
|
ressbasss |
⊢ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐷 ) |
34 |
32 33
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
35 |
28 34
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
36 |
25 35
|
ssind |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ran 𝐹 ⊆ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
37 |
|
df-f |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
38 |
24 36 37
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐹 : 𝐴 ⟶ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
39 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
41 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝑥 ∈ 𝐴 ) |
42 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝑦 ∈ 𝐴 ) |
43 |
1 10 39 40 41 42
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
44 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) |
46 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝑥 ∈ 𝐴 ) |
47 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝑦 ∈ 𝐴 ) |
48 |
1 10 44 45 46 47
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
49 |
2 39
|
resshom |
⊢ ( 𝑆 ∈ 𝑉 → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
50 |
4 49
|
syl |
⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
52 |
51
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
53 |
52
|
feq3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
54 |
48 53
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
55 |
43 54
|
jaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
56 |
55
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
57 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
58 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
59 |
57 58
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
60 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
61 |
57 60
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
62 |
59 61
|
ovresd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Homf ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
59
|
elin2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
64 |
61
|
elin2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
65 |
12 11 39 63 64
|
homfval |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( Homf ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
66 |
62 65
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
67 |
66
|
feq3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
68 |
56 67
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
69 |
1 10 16 22 38 68
|
funcres2b |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) 𝐺 ) ) |
70 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ) |
71 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) ) |
72 |
11
|
ressinbas |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐷 ↾s 𝑆 ) = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
73 |
4 72
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↾s 𝑆 ) = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
74 |
2 73
|
eqtrid |
⊢ ( 𝜑 → 𝐸 = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
75 |
74
|
fveq2d |
⊢ ( 𝜑 → ( Homf ‘ 𝐸 ) = ( Homf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) |
76 |
|
eqid |
⊢ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
77 |
|
eqid |
⊢ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) = ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) |
78 |
11 12 3 14 76 77
|
fullresc |
⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ∧ ( compf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) ) |
79 |
78
|
simpld |
⊢ ( 𝜑 → ( Homf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
80 |
75 79
|
eqtrd |
⊢ ( 𝜑 → ( Homf ‘ 𝐸 ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( Homf ‘ 𝐸 ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
82 |
74
|
fveq2d |
⊢ ( 𝜑 → ( compf ‘ 𝐸 ) = ( compf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) |
83 |
78
|
simprd |
⊢ ( 𝜑 → ( compf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
84 |
82 83
|
eqtrd |
⊢ ( 𝜑 → ( compf ‘ 𝐸 ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( compf ‘ 𝐸 ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
86 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
87 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
88 |
86 87
|
sylbi |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
89 |
88
|
simpld |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐶 ∈ Cat ) |
90 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
91 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
92 |
90 91
|
sylbi |
⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
93 |
92
|
simpld |
⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → 𝐶 ∈ Cat ) |
94 |
89 93
|
jaoi |
⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐶 ∈ Cat ) |
95 |
94
|
elexd |
⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐶 ∈ V ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐶 ∈ V ) |
97 |
2
|
ovexi |
⊢ 𝐸 ∈ V |
98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐸 ∈ V ) |
99 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ∈ V ) |
100 |
70 71 81 85 96 96 98 99
|
funcpropd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐶 Func 𝐸 ) = ( 𝐶 Func ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
101 |
100
|
breqd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) 𝐺 ) ) |
102 |
69 101
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
103 |
102
|
ex |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ) |
104 |
7 9 103
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |