| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcrngcsetc.r |
⊢ 𝑅 = ( RngCat ‘ 𝑈 ) |
| 2 |
|
funcrngcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcrngcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
funcrngcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 5 |
|
funcrngcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 6 |
|
funcrngcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) |
| 7 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 10 |
7 4
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 11 |
10
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( Base ‘ 𝑥 ) ) ) |
| 12 |
|
mpoeq12 |
⊢ ( ( 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ∧ 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑦 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 13 |
10 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑦 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 14 |
7 2 8 9 4 11 13
|
funcestrcsetc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 15 |
|
df-br |
⊢ ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ↔ 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝜑 → 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 18 |
1 17 4
|
rngcbas |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( 𝑈 ∩ Rng ) ) |
| 19 |
|
incom |
⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Rng ∩ 𝑈 ) ) |
| 21 |
|
eqid |
⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) |
| 22 |
1 17 4 21
|
rngchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) = ( RngHom ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
| 23 |
7 4 20 22
|
rnghmsubcsetc |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 24 |
16 23
|
funcres |
⊢ ( 𝜑 → ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) ∈ ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func 𝑆 ) ) |
| 25 |
|
mptexg |
⊢ ( 𝑈 ∈ WUni → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ∈ V ) |
| 26 |
4 25
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ∈ V ) |
| 27 |
|
fvex |
⊢ ( Hom ‘ 𝑅 ) ∈ V |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ V ) |
| 29 |
|
mpoexga |
⊢ ( ( 𝑈 ∈ WUni ∧ 𝑈 ∈ WUni ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ∈ V ) |
| 30 |
4 4 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ∈ V ) |
| 31 |
18 22
|
rnghmresfn |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) Fn ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 32 |
26 28 30 31
|
resfval2 |
⊢ ( 𝜑 → ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) = 〈 ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) , ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) 〉 ) |
| 33 |
|
inss1 |
⊢ ( 𝑈 ∩ Rng ) ⊆ 𝑈 |
| 34 |
18 33
|
eqsstrdi |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ 𝑈 ) |
| 35 |
34
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) ) |
| 36 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 37 |
36
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) ) |
| 38 |
5 37
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) = 𝐹 ) |
| 39 |
35 38
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) = 𝐹 ) |
| 40 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 RngHom 𝑦 ) = ( 𝑎 RngHom 𝑦 ) ) |
| 41 |
40
|
reseq2d |
⊢ ( 𝑥 = 𝑎 → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( I ↾ ( 𝑎 RngHom 𝑦 ) ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 RngHom 𝑦 ) = ( 𝑎 RngHom 𝑏 ) ) |
| 43 |
42
|
reseq2d |
⊢ ( 𝑦 = 𝑏 → ( I ↾ ( 𝑎 RngHom 𝑦 ) ) = ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 44 |
41 43
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) ) |
| 46 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 48 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑏 ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑎 ) ) |
| 50 |
48 49
|
oveqan12rd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 51 |
50
|
reseq2d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 53 |
3 34
|
eqsstrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 54 |
53
|
sseld |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝑈 ) ) |
| 55 |
54
|
com12 |
⊢ ( 𝑎 ∈ 𝐵 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 57 |
56
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝑈 ) |
| 58 |
53
|
sseld |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝑈 ) ) |
| 59 |
58
|
adantld |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝑈 ) ) |
| 60 |
59
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝑈 ) |
| 61 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ∈ V ) |
| 62 |
61
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ∈ V ) |
| 63 |
47 52 57 60 62
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 64 |
63
|
reseq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) = ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) |
| 65 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 66 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 67 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 68 |
1 3 65 21 66 67
|
rngchom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) = ( 𝑎 RngHom 𝑏 ) ) |
| 69 |
68
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) = ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 70 |
|
eqid |
⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) |
| 71 |
|
eqid |
⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) |
| 72 |
70 71
|
rnghmf |
⊢ ( 𝑓 ∈ ( 𝑎 RngHom 𝑏 ) → 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) |
| 73 |
|
fvex |
⊢ ( Base ‘ 𝑏 ) ∈ V |
| 74 |
|
fvex |
⊢ ( Base ‘ 𝑎 ) ∈ V |
| 75 |
73 74
|
pm3.2i |
⊢ ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) |
| 76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) ) |
| 77 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 78 |
76 77
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 79 |
72 78
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑎 RngHom 𝑏 ) → 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 80 |
79
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 RngHom 𝑏 ) ⊆ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 81 |
80
|
resabs1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 RngHom 𝑏 ) ) = ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 82 |
64 69 81
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( I ↾ ( 𝑎 RngHom 𝑏 ) ) = ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) |
| 83 |
36 46 82
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) ) |
| 84 |
6 45 83
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) = 𝐺 ) |
| 85 |
39 84
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) , ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) 〉 = 〈 𝐹 , 𝐺 〉 ) |
| 86 |
32 85
|
eqtr2d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) ) |
| 87 |
1 4 18 22
|
rngcval |
⊢ ( 𝜑 → 𝑅 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) |
| 88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 Func 𝑆 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func 𝑆 ) ) |
| 89 |
24 86 88
|
3eltr4d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 90 |
|
df-br |
⊢ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 91 |
89 90
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |