| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcrngcsetcALT.r | 
							⊢ 𝑅  =  ( RngCat ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							funcrngcsetcALT.s | 
							⊢ 𝑆  =  ( SetCat ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							funcrngcsetcALT.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							funcrngcsetcALT.u | 
							⊢ ( 𝜑  →  𝑈  ∈  WUni )  | 
						
						
							| 5 | 
							
								
							 | 
							funcrngcsetcALT.f | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( Base ‘ 𝑥 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							funcrngcsetcALT.g | 
							⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑢  →  ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑢 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  𝐵  ↦  ( Base ‘ 𝑥 ) )  =  ( 𝑢  ∈  𝐵  ↦  ( Base ‘ 𝑢 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑢  ∈  𝐵  ↦  ( Base ‘ 𝑢 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							coires1 | 
							⊢ ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ∘  (  I   ↾  𝐵 ) )  =  ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ↾  𝐵 )  | 
						
						
							| 11 | 
							
								1 3 4
							 | 
							rngcbas | 
							⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Rng ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( 𝑈  ∩  Rng ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑥  ∈  ( 𝑈  ∩  Rng )  ↔  ( 𝑥  ∈  𝑈  ∧  𝑥  ∈  Rng ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simplbi | 
							⊢ ( 𝑥  ∈  ( 𝑈  ∩  Rng )  →  𝑥  ∈  𝑈 )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							biimtrdi | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑈 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ssrdv | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝑈 )  | 
						
						
							| 17 | 
							
								16
							 | 
							resmptd | 
							⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ↾  𝐵 )  =  ( 𝑢  ∈  𝐵  ↦  ( Base ‘ 𝑢 ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							eqtr2id | 
							⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  ↦  ( Base ‘ 𝑢 ) )  =  ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ∘  (  I   ↾  𝐵 ) ) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝐹  =  ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ∘  (  I   ↾  𝐵 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							coires1 | 
							⊢ ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∘  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  =  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ↾  ( 𝑥  RngHom  𝑦 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑥 )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑦 )  =  ( Base ‘ 𝑦 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							rnghmf | 
							⊢ ( 𝑧  ∈  ( 𝑥  RngHom  𝑦 )  →  𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ 𝑦 )  ∈  V  | 
						
						
							| 25 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ 𝑥 )  ∈  V  | 
						
						
							| 26 | 
							
								24 25
							 | 
							pm3.2i | 
							⊢ ( ( Base ‘ 𝑦 )  ∈  V  ∧  ( Base ‘ 𝑥 )  ∈  V )  | 
						
						
							| 27 | 
							
								
							 | 
							elmapg | 
							⊢ ( ( ( Base ‘ 𝑦 )  ∈  V  ∧  ( Base ‘ 𝑥 )  ∈  V )  →  ( 𝑧  ∈  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) )  ↔  𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mp1i | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑧  ∈  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) )  ↔  𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							imbitrrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝑥  RngHom  𝑦 )  →  𝑧  ∈  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ssrdv | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  RngHom  𝑦 )  ⊆  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							resabs1d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ↾  ( 𝑥  RngHom  𝑦 ) )  =  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  | 
						
						
							| 32 | 
							
								20 31
							 | 
							eqtr2id | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  (  I   ↾  ( 𝑥  RngHom  𝑦 ) )  =  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∘  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							mpoeq3dva | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∘  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) ) ) )  | 
						
						
							| 34 | 
							
								6 33
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∘  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) ) ) )  | 
						
						
							| 35 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 36 | 
							
								3
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐵  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							fvresi | 
							⊢ ( 𝑥  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 )  | 
						
						
							| 40 | 
							
								
							 | 
							fvresi | 
							⊢ ( 𝑦  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( (  I   ↾  𝐵 ) ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( (  I   ↾  𝐵 ) ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 43 | 
							
								39 42
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) )  =  ( 𝑥 ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) )  =  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑤  =  𝑥  ∧  𝑧  =  𝑦 ) )  →  𝑧  =  𝑦 )  | 
						
						
							| 46 | 
							
								45
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑤  =  𝑥  ∧  𝑧  =  𝑦 ) )  →  ( Base ‘ 𝑧 )  =  ( Base ‘ 𝑦 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑤  =  𝑥  ∧  𝑧  =  𝑦 ) )  →  𝑤  =  𝑥 )  | 
						
						
							| 48 | 
							
								47
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑤  =  𝑥  ∧  𝑧  =  𝑦 ) )  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑥 ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑤  =  𝑥  ∧  𝑧  =  𝑦 ) )  →  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) )  =  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							reseq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑤  =  𝑥  ∧  𝑧  =  𝑦 ) )  →  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) )  =  (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) )  | 
						
						
							| 51 | 
							
								15
							 | 
							com12 | 
							⊢ ( 𝑥  ∈  𝐵  →  ( 𝜑  →  𝑥  ∈  𝑈 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝜑  →  𝑥  ∈  𝑈 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							impcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝑈 )  | 
						
						
							| 54 | 
							
								11
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( 𝑈  ∩  Rng ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑦  ∈  ( 𝑈  ∩  Rng )  ↔  ( 𝑦  ∈  𝑈  ∧  𝑦  ∈  Rng ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							simplbi | 
							⊢ ( 𝑦  ∈  ( 𝑈  ∩  Rng )  →  𝑦  ∈  𝑈 )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							biimtrdi | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝑈 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							a1d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝑈 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							imp32 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝑈 )  | 
						
						
							| 60 | 
							
								
							 | 
							ovex | 
							⊢ ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) )  ∈  V  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) )  ∈  V )  | 
						
						
							| 62 | 
							
								61
							 | 
							resiexd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∈  V )  | 
						
						
							| 63 | 
							
								44 50 53 59 62
							 | 
							ovmpod | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 𝑦 )  =  (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) )  | 
						
						
							| 64 | 
							
								43 63
							 | 
							eqtr2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  =  ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑓  =  𝑥  ∧  𝑔  =  𝑦 )  →  ( 𝑓  RngHom  𝑔 )  =  ( 𝑥  RngHom  𝑦 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							reseq2d | 
							⊢ ( ( 𝑓  =  𝑥  ∧  𝑔  =  𝑦 )  →  (  I   ↾  ( 𝑓  RngHom  𝑔 ) )  =  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑓  =  𝑥  ∧  𝑔  =  𝑦 ) )  →  (  I   ↾  ( 𝑓  RngHom  𝑔 ) )  =  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 70 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 71 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑥  RngHom  𝑦 )  ∈  V  | 
						
						
							| 72 | 
							
								71
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  RngHom  𝑦 )  ∈  V )  | 
						
						
							| 73 | 
							
								72
							 | 
							resiexd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  (  I   ↾  ( 𝑥  RngHom  𝑦 ) )  ∈  V )  | 
						
						
							| 74 | 
							
								65 68 69 70 73
							 | 
							ovmpod | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 )  =  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  (  I   ↾  ( 𝑥  RngHom  𝑦 ) )  =  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 ) )  | 
						
						
							| 76 | 
							
								64 75
							 | 
							coeq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∘  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) )  =  ( ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) )  ∘  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 ) ) )  | 
						
						
							| 77 | 
							
								35 36 76
							 | 
							mpoeq123dva | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) )  ∘  (  I   ↾  ( 𝑥  RngHom  𝑦 ) ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) )  ∘  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 ) ) ) )  | 
						
						
							| 78 | 
							
								34 77
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) )  ∘  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 ) ) ) )  | 
						
						
							| 79 | 
							
								19 78
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  =  〈 ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ∘  (  I   ↾  𝐵 ) ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) )  ∘  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 ) ) ) 〉 )  | 
						
						
							| 80 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 81 | 
							
								
							 | 
							eqid | 
							⊢ ( ExtStrCat ‘ 𝑈 )  =  ( ExtStrCat ‘ 𝑈 )  | 
						
						
							| 82 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  (  I   ↾  𝐵 )  =  (  I   ↾  𝐵 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) )  | 
						
						
							| 84 | 
							
								1 81 3 4 82 83
							 | 
							rngcifuestrc | 
							⊢ ( 𝜑  →  (  I   ↾  𝐵 ) ( 𝑅  Func  ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  =  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 )  | 
						
						
							| 87 | 
							
								81 4
							 | 
							estrcbas | 
							⊢ ( 𝜑  →  𝑈  =  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							mpteq1d | 
							⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  =  ( 𝑢  ∈  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  ↦  ( Base ‘ 𝑢 ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑢  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑢 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							oveq2d | 
							⊢ ( 𝑤  =  𝑢  →  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) )  =  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑢 ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							reseq2d | 
							⊢ ( 𝑤  =  𝑢  →  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) )  =  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑢 ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  𝑣  →  ( Base ‘ 𝑧 )  =  ( Base ‘ 𝑣 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							oveq1d | 
							⊢ ( 𝑧  =  𝑣  →  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑢 ) )  =  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							reseq2d | 
							⊢ ( 𝑧  =  𝑣  →  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑢 ) ) )  =  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) )  | 
						
						
							| 95 | 
							
								91 94
							 | 
							cbvmpov | 
							⊢ ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) )  =  ( 𝑢  ∈  𝑈 ,  𝑣  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) )  =  ( 𝑢  ∈  𝑈 ,  𝑣  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) ) )  | 
						
						
							| 97 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) )  =  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) )  | 
						
						
							| 98 | 
							
								87 87 97
							 | 
							mpoeq123dv | 
							⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈 ,  𝑣  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) )  =  ( 𝑢  ∈  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ,  𝑣  ∈  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  ↦  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) ) )  | 
						
						
							| 99 | 
							
								96 98
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) )  =  ( 𝑢  ∈  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ,  𝑣  ∈  ( Base ‘ ( ExtStrCat ‘ 𝑈 ) )  ↦  (  I   ↾  ( ( Base ‘ 𝑣 )  ↑m  ( Base ‘ 𝑢 ) ) ) ) )  | 
						
						
							| 100 | 
							
								81 2 85 86 4 88 99
							 | 
							funcestrcsetc | 
							⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 )  Func  𝑆 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) )  | 
						
						
							| 101 | 
							
								80 84 100
							 | 
							cofuval2 | 
							⊢ ( 𝜑  →  ( 〈 ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ,  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 〉  ∘func  〈 (  I   ↾  𝐵 ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 〉 )  =  〈 ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) )  ∘  (  I   ↾  𝐵 ) ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( ( ( (  I   ↾  𝐵 ) ‘ 𝑥 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ( (  I   ↾  𝐵 ) ‘ 𝑦 ) )  ∘  ( 𝑥 ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 𝑦 ) ) ) 〉 )  | 
						
						
							| 102 | 
							
								79 101
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  =  ( 〈 ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ,  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 〉  ∘func  〈 (  I   ↾  𝐵 ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 〉 ) )  | 
						
						
							| 103 | 
							
								
							 | 
							df-br | 
							⊢ ( (  I   ↾  𝐵 ) ( 𝑅  Func  ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) )  ↔  〈 (  I   ↾  𝐵 ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 〉  ∈  ( 𝑅  Func  ( ExtStrCat ‘ 𝑈 ) ) )  | 
						
						
							| 104 | 
							
								84 103
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 (  I   ↾  𝐵 ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 〉  ∈  ( 𝑅  Func  ( ExtStrCat ‘ 𝑈 ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							df-br | 
							⊢ ( ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 )  Func  𝑆 ) ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) )  ↔  〈 ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ,  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 〉  ∈  ( ( ExtStrCat ‘ 𝑈 )  Func  𝑆 ) )  | 
						
						
							| 106 | 
							
								100 105
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ,  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 〉  ∈  ( ( ExtStrCat ‘ 𝑈 )  Func  𝑆 ) )  | 
						
						
							| 107 | 
							
								104 106
							 | 
							cofucl | 
							⊢ ( 𝜑  →  ( 〈 ( 𝑢  ∈  𝑈  ↦  ( Base ‘ 𝑢 ) ) ,  ( 𝑤  ∈  𝑈 ,  𝑧  ∈  𝑈  ↦  (  I   ↾  ( ( Base ‘ 𝑧 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) 〉  ∘func  〈 (  I   ↾  𝐵 ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  (  I   ↾  ( 𝑓  RngHom  𝑔 ) ) ) 〉 )  ∈  ( 𝑅  Func  𝑆 ) )  | 
						
						
							| 108 | 
							
								102 107
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝑅  Func  𝑆 ) )  | 
						
						
							| 109 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝐹 ( 𝑅  Func  𝑆 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝑅  Func  𝑆 ) )  | 
						
						
							| 110 | 
							
								108 109
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝐹 ( 𝑅  Func  𝑆 ) 𝐺 )  |