| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcsetcestrc.s | 
							⊢ 𝑆  =  ( SetCat ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							funcsetcestrc.c | 
							⊢ 𝐶  =  ( Base ‘ 𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							funcsetcestrc.f | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐶  ↦  { 〈 ( Base ‘ ndx ) ,  𝑥 〉 } ) )  | 
						
						
							| 4 | 
							
								
							 | 
							funcsetcestrc.u | 
							⊢ ( 𝜑  →  𝑈  ∈  WUni )  | 
						
						
							| 5 | 
							
								
							 | 
							funcsetcestrc.o | 
							⊢ ( 𝜑  →  ω  ∈  𝑈 )  | 
						
						
							| 6 | 
							
								
							 | 
							funcsetcestrc.g | 
							⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐶 ,  𝑦  ∈  𝐶  ↦  (  I   ↾  ( 𝑦  ↑m  𝑥 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							funcsetcestrc.e | 
							⊢ 𝐸  =  ( ExtStrCat ‘ 𝑈 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝑆 )  =  ( Hom  ‘ 𝑆 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐸 )  =  ( Hom  ‘ 𝐸 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝑆 )  =  ( Id ‘ 𝑆 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝐸 )  =  ( Id ‘ 𝐸 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝑆 )  =  ( comp ‘ 𝑆 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝐸 )  =  ( comp ‘ 𝐸 )  | 
						
						
							| 15 | 
							
								1
							 | 
							setccat | 
							⊢ ( 𝑈  ∈  WUni  →  𝑆  ∈  Cat )  | 
						
						
							| 16 | 
							
								4 15
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑆  ∈  Cat )  | 
						
						
							| 17 | 
							
								7
							 | 
							estrccat | 
							⊢ ( 𝑈  ∈  WUni  →  𝐸  ∈  Cat )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐸  ∈  Cat )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 7 8
							 | 
							funcsetcestrclem3 | 
							⊢ ( 𝜑  →  𝐹 : 𝐶 ⟶ ( Base ‘ 𝐸 ) )  | 
						
						
							| 20 | 
							
								1 2 3 4 5 6
							 | 
							funcsetcestrclem4 | 
							⊢ ( 𝜑  →  𝐺  Fn  ( 𝐶  ×  𝐶 ) )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6 7
							 | 
							funcsetcestrclem8 | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐶  ∧  𝑏  ∈  𝐶 ) )  →  ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom  ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom  ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 7
							 | 
							funcsetcestrclem7 | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐶 )  →  ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑎 ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) )  | 
						
						
							| 23 | 
							
								1 2 3 4 5 6 7
							 | 
							funcsetcestrclem9 | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐶  ∧  𝑏  ∈  𝐶  ∧  𝑐  ∈  𝐶 )  ∧  ( ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑆 ) 𝑏 )  ∧  𝑘  ∈  ( 𝑏 ( Hom  ‘ 𝑆 ) 𝑐 ) ) )  →  ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑘 ( 〈 𝑎 ,  𝑏 〉 ( comp ‘ 𝑆 ) 𝑐 ) ℎ ) )  =  ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑘 ) ( 〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) ) )  | 
						
						
							| 24 | 
							
								2 8 9 10 11 12 13 14 16 18 19 20 21 22 23
							 | 
							isfuncd | 
							⊢ ( 𝜑  →  𝐹 ( 𝑆  Func  𝐸 ) 𝐺 )  |