Metamath Proof Explorer


Theorem functhinc

Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered ( catprs2 ). (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinc.b 𝐵 = ( Base ‘ 𝐷 )
functhinc.c 𝐶 = ( Base ‘ 𝐸 )
functhinc.h 𝐻 = ( Hom ‘ 𝐷 )
functhinc.j 𝐽 = ( Hom ‘ 𝐸 )
functhinc.d ( 𝜑𝐷 ∈ Cat )
functhinc.e ( 𝜑𝐸 ∈ ThinCat )
functhinc.f ( 𝜑𝐹 : 𝐵𝐶 )
functhinc.k 𝐾 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
functhinc.1 ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( ( ( 𝐹𝑧 ) 𝐽 ( 𝐹𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) )
Assertion functhinc ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺𝐺 = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 functhinc.b 𝐵 = ( Base ‘ 𝐷 )
2 functhinc.c 𝐶 = ( Base ‘ 𝐸 )
3 functhinc.h 𝐻 = ( Hom ‘ 𝐷 )
4 functhinc.j 𝐽 = ( Hom ‘ 𝐸 )
5 functhinc.d ( 𝜑𝐷 ∈ Cat )
6 functhinc.e ( 𝜑𝐸 ∈ ThinCat )
7 functhinc.f ( 𝜑𝐹 : 𝐵𝐶 )
8 functhinc.k 𝐾 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
9 functhinc.1 ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( ( ( 𝐹𝑧 ) 𝐽 ( 𝐹𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) )
10 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
11 eqid ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 )
12 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
13 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
14 6 thinccd ( 𝜑𝐸 ∈ Cat )
15 1 2 3 4 10 11 12 13 5 14 isfunc ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵𝐶𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) )
16 3anass ( ( 𝐹 : 𝐵𝐶𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ↔ ( 𝐹 : 𝐵𝐶 ∧ ( 𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) )
17 15 16 bitrdi ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵𝐶 ∧ ( 𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) )
18 7 17 mpbirand ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) )
19 funcf2lem ( 𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑣𝐵𝑢𝐵 ( 𝑣 𝐺 𝑢 ) : ( 𝑣 𝐻 𝑢 ) ⟶ ( ( 𝐹𝑣 ) 𝐽 ( 𝐹𝑢 ) ) ) )
20 simprl ( ( 𝜑 ∧ ( 𝑣𝐵𝑢𝐵 ) ) → 𝑣𝐵 )
21 simprr ( ( 𝜑 ∧ ( 𝑣𝐵𝑢𝐵 ) ) → 𝑢𝐵 )
22 9 adantr ( ( 𝜑 ∧ ( 𝑣𝐵𝑢𝐵 ) ) → ∀ 𝑧𝐵𝑤𝐵 ( ( ( 𝐹𝑧 ) 𝐽 ( 𝐹𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) )
23 20 21 22 functhinclem2 ( ( 𝜑 ∧ ( 𝑣𝐵𝑢𝐵 ) ) → ( ( ( 𝐹𝑣 ) 𝐽 ( 𝐹𝑢 ) ) = ∅ → ( 𝑣 𝐻 𝑢 ) = ∅ ) )
24 1 2 3 4 6 7 8 23 functhinclem1 ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑣𝐵𝑢𝐵 ( 𝑣 𝐺 𝑢 ) : ( 𝑣 𝐻 𝑢 ) ⟶ ( ( 𝐹𝑣 ) 𝐽 ( 𝐹𝑢 ) ) ) ↔ 𝐺 = 𝐾 ) )
25 19 24 syl5bb ( 𝜑 → ( 𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ↔ 𝐺 = 𝐾 ) )
26 25 anbi1d ( 𝜑 → ( ( 𝐺X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑐 ) ) ) ↑m ( 𝐻𝑐 ) ) ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ↔ ( 𝐺 = 𝐾 ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) )
27 18 26 bitrd ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐺 = 𝐾 ∧ ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) )
28 1 2 3 4 5 6 7 8 9 10 11 12 13 functhinclem4 ( ( 𝜑𝐺 = 𝐾 ) → ∀ 𝑎𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) ∧ ∀ 𝑏𝐵𝑐𝐵𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) )
29 27 28 mpbiran3d ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺𝐺 = 𝐾 ) )