Step |
Hyp |
Ref |
Expression |
1 |
|
functhincfun.d |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
functhincfun.e |
⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |
3 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
4 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝐶 ∈ Cat ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝐷 ∈ ThinCat ) |
11 |
5 6 4
|
funcf1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑓 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
13 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) |
14 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
15 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
16 |
5 7 8 13 14 15
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) |
17 |
16
|
f002 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) ) |
18 |
17
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) ) |
19 |
5 6 7 8 9 10 11 12 18
|
functhinc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ↔ 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
20 |
4 19
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
21 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) |
22 |
5 6 7 8 9 10 11 12 18
|
functhinc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ( 𝑓 ( 𝐶 Func 𝐷 ) ℎ ↔ ℎ = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
23 |
21 22
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
24 |
20 23
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑔 = ℎ ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) |
26 |
25
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) |
27 |
26
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) |
28 |
|
dffun2 |
⊢ ( Fun ( 𝐶 Func 𝐷 ) ↔ ( Rel ( 𝐶 Func 𝐷 ) ∧ ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) ) |
29 |
28
|
biimpri |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) → Fun ( 𝐶 Func 𝐷 ) ) |
30 |
3 27 29
|
sylancr |
⊢ ( 𝜑 → Fun ( 𝐶 Func 𝐷 ) ) |