Step |
Hyp |
Ref |
Expression |
1 |
|
functhinclem1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
functhinclem1.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
functhinclem1.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
functhinclem1.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
functhinclem1.e |
⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) |
6 |
|
functhinclem1.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
7 |
|
functhinclem1.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
8 |
|
functhinclem1.1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
9 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝜑 ) |
10 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
11 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
12 |
|
eqid |
⊢ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
13 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
14 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐸 ∈ ThinCat ) |
15 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
17 |
15 16
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
19 |
15 18
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
20 |
14 17 19 2 4
|
thincmo |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ∃* 𝑚 𝑚 ∈ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
21 |
12 13 20
|
mofeu |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑧 𝐺 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
22 24
|
xpeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑧 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
29 |
26 28
|
xpeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
30 |
|
ovex |
⊢ ( 𝑧 𝐻 𝑤 ) ∈ V |
31 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∈ V |
32 |
30 31
|
xpex |
⊢ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ∈ V |
33 |
25 29 7 32
|
ovmpo |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 𝐾 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 𝐾 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
35 |
34
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ↔ ( 𝑧 𝐺 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
36 |
21 35
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
37 |
36
|
2ralbidva |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
39 |
|
ovex |
⊢ ( 𝑥 𝐻 𝑦 ) ∈ V |
40 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∈ V |
41 |
39 40
|
xpex |
⊢ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ∈ V |
42 |
7 41
|
fnmpoi |
⊢ 𝐾 Fn ( 𝐵 × 𝐵 ) |
43 |
|
eqfnov2 |
⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ 𝐾 Fn ( 𝐵 × 𝐵 ) ) → ( 𝐺 = 𝐾 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
44 |
38 42 43
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( 𝐺 = 𝐾 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
45 |
37 44
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ 𝐺 = 𝐾 ) ) |
46 |
45
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) → 𝐺 = 𝐾 ) |
47 |
9 10 11 46
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐺 = 𝐾 ) |
48 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
49 |
48 48
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ V |
50 |
7 49
|
eqeltri |
⊢ 𝐾 ∈ V |
51 |
|
eleq1 |
⊢ ( 𝐺 = 𝐾 → ( 𝐺 ∈ V ↔ 𝐾 ∈ V ) ) |
52 |
50 51
|
mpbiri |
⊢ ( 𝐺 = 𝐾 → 𝐺 ∈ V ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 ∈ V ) |
54 |
|
fneq1 |
⊢ ( 𝐺 = 𝐾 → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ↔ 𝐾 Fn ( 𝐵 × 𝐵 ) ) ) |
55 |
42 54
|
mpbiri |
⊢ ( 𝐺 = 𝐾 → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
57 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝜑 ) |
58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 = 𝐾 ) |
59 |
45
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ 𝐺 = 𝐾 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
60 |
57 56 58 59
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
61 |
53 56 60
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
62 |
47 61
|
impbida |
⊢ ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ↔ 𝐺 = 𝐾 ) ) |