Metamath Proof Explorer


Theorem functhinclem3

Description: Lemma for functhinc . The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinclem3.x ( 𝜑𝑋𝐵 )
functhinclem3.y ( 𝜑𝑌𝐵 )
functhinclem3.m ( 𝜑𝑀 ∈ ( 𝑋 𝐻 𝑌 ) )
functhinclem3.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) )
functhinclem3.1 ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ → ( 𝑋 𝐻 𝑌 ) = ∅ ) )
functhinclem3.2 ( 𝜑 → ∃* 𝑛 𝑛 ∈ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
Assertion functhinclem3 ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 functhinclem3.x ( 𝜑𝑋𝐵 )
2 functhinclem3.y ( 𝜑𝑌𝐵 )
3 functhinclem3.m ( 𝜑𝑀 ∈ ( 𝑋 𝐻 𝑌 ) )
4 functhinclem3.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) )
5 functhinclem3.1 ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ → ( 𝑋 𝐻 𝑌 ) = ∅ ) )
6 functhinclem3.2 ( 𝜑 → ∃* 𝑛 𝑛 ∈ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
7 simprl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 )
8 simprr ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 )
9 7 8 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
10 7 fveq2d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
11 8 fveq2d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝐹𝑦 ) = ( 𝐹𝑌 ) )
12 10 11 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
13 9 12 xpeq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) )
14 ovex ( 𝑋 𝐻 𝑌 ) ∈ V
15 ovex ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ∈ V
16 14 15 xpex ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) ∈ V
17 16 a1i ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) ∈ V )
18 4 13 1 2 17 ovmpod ( 𝜑 → ( 𝑋 𝐺 𝑌 ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) )
19 eqid ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
20 19 5 6 mofeu ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ↔ ( 𝑋 𝐺 𝑌 ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) ) ) )
21 18 20 mpbird ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
22 21 3 ffvelrnd ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )