Step |
Hyp |
Ref |
Expression |
1 |
|
functhinc.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
functhinc.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
functhinc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
functhinc.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
functhinc.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
6 |
|
functhinc.e |
⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) |
7 |
|
functhinc.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
8 |
|
functhinc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
|
functhinc.1 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
10 |
|
functhinclem4.1 |
⊢ 1 = ( Id ‘ 𝐷 ) |
11 |
|
functhinclem4.i |
⊢ 𝐼 = ( Id ‘ 𝐸 ) |
12 |
|
functhinclem4.x |
⊢ · = ( comp ‘ 𝐷 ) |
13 |
|
functhinclem4.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
14 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐸 ∈ ThinCat ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
16 |
15
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐶 ) |
17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
18 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
19 |
1 3 10 18 17
|
catidcl |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( 1 ‘ 𝑎 ) ∈ ( 𝑎 𝐻 𝑎 ) ) |
20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐺 = 𝐾 ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 𝐻 𝑦 ) = ( 𝑣 𝐻 𝑦 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
24 |
21 23
|
xpeq12d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑣 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝑣 𝐻 𝑦 ) = ( 𝑣 𝐻 𝑢 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑢 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) |
28 |
25 27
|
xpeq12d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑣 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) |
29 |
24 28
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) |
30 |
8 29
|
eqtri |
⊢ 𝐾 = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) |
31 |
20 30
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐺 = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
32 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
33 |
17 17 32
|
functhinclem2 |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑎 ) ) = ∅ → ( 𝑎 𝐻 𝑎 ) = ∅ ) ) |
34 |
14 16 16 2 4
|
thincmo |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑎 ) ) ) |
35 |
17 17 19 31 33 34
|
functhinclem3 |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑎 ) ) ) |
36 |
14 2 4 16 11 35
|
thincid |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
37 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐶 ) |
38 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
39 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑐 ∈ 𝐵 ) |
40 |
38 39
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐶 ) |
41 |
17
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑎 ∈ 𝐵 ) |
42 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐷 ∈ Cat ) |
43 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑏 ∈ 𝐵 ) |
44 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ) |
45 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) |
46 |
1 3 12 42 41 43 39 44 45
|
catcocl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ∈ ( 𝑎 𝐻 𝑐 ) ) |
47 |
31
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐺 = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
48 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
49 |
41 39 48
|
functhinclem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) = ∅ → ( 𝑎 𝐻 𝑐 ) = ∅ ) ) |
50 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐸 ∈ ThinCat ) |
51 |
50 37 40 2 4
|
thincmo |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
52 |
41 39 46 47 49 51
|
functhinclem3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
53 |
14
|
thinccd |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐸 ∈ Cat ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐸 ∈ Cat ) |
55 |
38 43
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
56 |
41 43 48
|
functhinclem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑏 ) ) = ∅ → ( 𝑎 𝐻 𝑏 ) = ∅ ) ) |
57 |
50 37 55 2 4
|
thincmo |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑏 ) ) ) |
58 |
41 43 44 47 56 57
|
functhinclem3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑏 ) ) ) |
59 |
43 39 48
|
functhinclem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝐹 ‘ 𝑏 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) = ∅ → ( 𝑏 𝐻 𝑐 ) = ∅ ) ) |
60 |
50 55 40 2 4
|
thincmo |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑏 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
61 |
43 39 45 47 59 60
|
functhinclem3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ∈ ( ( 𝐹 ‘ 𝑏 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
62 |
2 4 13 54 37 55 40 58 61
|
catcocl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
63 |
37 40 52 62 2 4 50
|
thincmo2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) |
64 |
63
|
ralrimivva |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) |
65 |
64
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) |
66 |
36 65
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) ) |