Step |
Hyp |
Ref |
Expression |
1 |
|
reldif |
⊢ ( Rel 𝐹 → Rel ( 𝐹 ∖ 𝐴 ) ) |
2 |
|
brdif |
⊢ ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ↔ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐴 𝑦 ) ) |
3 |
|
brdif |
⊢ ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ↔ ( 𝑥 𝐹 𝑧 ∧ ¬ 𝑥 𝐴 𝑧 ) ) |
4 |
|
pm2.27 |
⊢ ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
5 |
4
|
ad2ant2r |
⊢ ( ( ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐴 𝑦 ) ∧ ( 𝑥 𝐹 𝑧 ∧ ¬ 𝑥 𝐴 𝑧 ) ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
6 |
2 3 5
|
syl2anb |
⊢ ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
7 |
6
|
com12 |
⊢ ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
8 |
7
|
alimi |
⊢ ( ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
9 |
8
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
10 |
1 9
|
anim12i |
⊢ ( ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) → ( Rel ( 𝐹 ∖ 𝐴 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
11 |
|
dffun2 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
12 |
|
dffun2 |
⊢ ( Fun ( 𝐹 ∖ 𝐴 ) ↔ ( Rel ( 𝐹 ∖ 𝐴 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
13 |
10 11 12
|
3imtr4i |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ∖ 𝐴 ) ) |