| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldif | ⊢ ( Rel  𝐹  →  Rel  ( 𝐹  ∖  𝐴 ) ) | 
						
							| 2 |  | brdif | ⊢ ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ↔  ( 𝑥 𝐹 𝑦  ∧  ¬  𝑥 𝐴 𝑦 ) ) | 
						
							| 3 |  | brdif | ⊢ ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑧  ↔  ( 𝑥 𝐹 𝑧  ∧  ¬  𝑥 𝐴 𝑧 ) ) | 
						
							| 4 |  | pm2.27 | ⊢ ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  ( ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 5 | 4 | ad2ant2r | ⊢ ( ( ( 𝑥 𝐹 𝑦  ∧  ¬  𝑥 𝐴 𝑦 )  ∧  ( 𝑥 𝐹 𝑧  ∧  ¬  𝑥 𝐴 𝑧 ) )  →  ( ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 6 | 2 3 5 | syl2anb | ⊢ ( ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ∧  𝑥 ( 𝐹  ∖  𝐴 ) 𝑧 )  →  ( ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 7 | 6 | com12 | ⊢ ( ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  ( ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ∧  𝑥 ( 𝐹  ∖  𝐴 ) 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 8 | 7 | alimi | ⊢ ( ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  ∀ 𝑧 ( ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ∧  𝑥 ( 𝐹  ∖  𝐴 ) 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 9 | 8 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ∧  𝑥 ( 𝐹  ∖  𝐴 ) 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 10 | 1 9 | anim12i | ⊢ ( ( Rel  𝐹  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) )  →  ( Rel  ( 𝐹  ∖  𝐴 )  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ∧  𝑥 ( 𝐹  ∖  𝐴 ) 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 11 |  | dffun2 | ⊢ ( Fun  𝐹  ↔  ( Rel  𝐹  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 12 |  | dffun2 | ⊢ ( Fun  ( 𝐹  ∖  𝐴 )  ↔  ( Rel  ( 𝐹  ∖  𝐴 )  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ∖  𝐴 ) 𝑦  ∧  𝑥 ( 𝐹  ∖  𝐴 ) 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 13 | 10 11 12 | 3imtr4i | ⊢ ( Fun  𝐹  →  Fun  ( 𝐹  ∖  𝐴 ) ) |