Metamath Proof Explorer


Theorem fundif

Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021)

Ref Expression
Assertion fundif ( Fun 𝐹 → Fun ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 reldif ( Rel 𝐹 → Rel ( 𝐹𝐴 ) )
2 brdif ( 𝑥 ( 𝐹𝐴 ) 𝑦 ↔ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐴 𝑦 ) )
3 brdif ( 𝑥 ( 𝐹𝐴 ) 𝑧 ↔ ( 𝑥 𝐹 𝑧 ∧ ¬ 𝑥 𝐴 𝑧 ) )
4 pm2.27 ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → ( ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) )
5 4 ad2ant2r ( ( ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐴 𝑦 ) ∧ ( 𝑥 𝐹 𝑧 ∧ ¬ 𝑥 𝐴 𝑧 ) ) → ( ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) )
6 2 3 5 syl2anb ( ( 𝑥 ( 𝐹𝐴 ) 𝑦𝑥 ( 𝐹𝐴 ) 𝑧 ) → ( ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) )
7 6 com12 ( ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ( ( 𝑥 ( 𝐹𝐴 ) 𝑦𝑥 ( 𝐹𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) )
8 7 alimi ( ∀ 𝑧 ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ∀ 𝑧 ( ( 𝑥 ( 𝐹𝐴 ) 𝑦𝑥 ( 𝐹𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) )
9 8 2alimi ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ∀ 𝑥𝑦𝑧 ( ( 𝑥 ( 𝐹𝐴 ) 𝑦𝑥 ( 𝐹𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) )
10 1 9 anim12i ( ( Rel 𝐹 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) → ( Rel ( 𝐹𝐴 ) ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 ( 𝐹𝐴 ) 𝑦𝑥 ( 𝐹𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) )
11 dffun2 ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐹 𝑦𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) )
12 dffun2 ( Fun ( 𝐹𝐴 ) ↔ ( Rel ( 𝐹𝐴 ) ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 ( 𝐹𝐴 ) 𝑦𝑥 ( 𝐹𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) )
13 10 11 12 3imtr4i ( Fun 𝐹 → Fun ( 𝐹𝐴 ) )