Description: A function is equinumerous to its domain. Exercise 4 of Suppes p. 98. (Contributed by NM, 17-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fundmeng | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → dom 𝐹 ≈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq | ⊢ ( 𝑥 = 𝐹 → ( Fun 𝑥 ↔ Fun 𝐹 ) ) | |
| 2 | dmeq | ⊢ ( 𝑥 = 𝐹 → dom 𝑥 = dom 𝐹 ) | |
| 3 | id | ⊢ ( 𝑥 = 𝐹 → 𝑥 = 𝐹 ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝑥 = 𝐹 → ( dom 𝑥 ≈ 𝑥 ↔ dom 𝐹 ≈ 𝐹 ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝑥 = 𝐹 → ( ( Fun 𝑥 → dom 𝑥 ≈ 𝑥 ) ↔ ( Fun 𝐹 → dom 𝐹 ≈ 𝐹 ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | fundmen | ⊢ ( Fun 𝑥 → dom 𝑥 ≈ 𝑥 ) |
| 8 | 5 7 | vtoclg | ⊢ ( 𝐹 ∈ 𝑉 → ( Fun 𝐹 → dom 𝐹 ≈ 𝐹 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → dom 𝐹 ≈ 𝐹 ) |