Metamath Proof Explorer


Theorem fundmge2nop

Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020) (Proof shortened by AV, 9-Jun-2021)

Ref Expression
Assertion fundmge2nop ( ( Fun 𝐺 ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 fundif ( Fun 𝐺 → Fun ( 𝐺 ∖ { ∅ } ) )
2 fundmge2nop0 ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) )
3 1 2 sylan ( ( Fun 𝐺 ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) )