Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | funeq | ⊢ ( 𝐴 = 𝐵 → ( Fun 𝐴 ↔ Fun 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 | ⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) | |
2 | funss | ⊢ ( 𝐵 ⊆ 𝐴 → ( Fun 𝐴 → Fun 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 = 𝐵 → ( Fun 𝐴 → Fun 𝐵 ) ) |
4 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
5 | funss | ⊢ ( 𝐴 ⊆ 𝐵 → ( Fun 𝐵 → Fun 𝐴 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 = 𝐵 → ( Fun 𝐵 → Fun 𝐴 ) ) |
7 | 3 6 | impbid | ⊢ ( 𝐴 = 𝐵 → ( Fun 𝐴 ↔ Fun 𝐵 ) ) |