Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | funfnd.1 | ⊢ ( 𝜑 → Fun 𝐴 ) | |
| Assertion | funfnd | ⊢ ( 𝜑 → 𝐴 Fn dom 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | ⊢ ( 𝜑 → Fun 𝐴 ) | |
| 2 | funfn | ⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → 𝐴 Fn dom 𝐴 ) |