Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | funfni.1 | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → 𝜑 ) | |
Assertion | funfni | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfni.1 | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → 𝜑 ) | |
2 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
3 | fndm | ⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) | |
4 | 3 | eleq2d | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴 ) ) |
5 | 4 | biimpar | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ dom 𝐹 ) |
6 | 2 5 1 | syl2an2r | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝜑 ) |