Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
2 |
1
|
unisn |
⊢ ∪ { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 ‘ 𝐴 ) |
3 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
4 |
|
df-fn |
⊢ ( 𝐹 Fn dom 𝐹 ↔ ( Fun 𝐹 ∧ dom 𝐹 = dom 𝐹 ) ) |
5 |
3 4
|
mpbiran2 |
⊢ ( 𝐹 Fn dom 𝐹 ↔ Fun 𝐹 ) |
6 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
7 |
5 6
|
sylanbr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
8 |
7
|
unieqd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ∪ { ( 𝐹 ‘ 𝐴 ) } = ∪ ( 𝐹 “ { 𝐴 } ) ) |
9 |
2 8
|
eqtr3id |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |
10 |
9
|
ex |
⊢ ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) ) |
11 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
12 |
|
ndmima |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
13 |
12
|
unieqd |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ∪ ( 𝐹 “ { 𝐴 } ) = ∪ ∅ ) |
14 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ∪ ( 𝐹 “ { 𝐴 } ) = ∅ ) |
16 |
11 15
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |
17 |
10 16
|
pm2.61d1 |
⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |