Metamath Proof Explorer


Theorem funfv2

Description: The value of a function. Definition of function value in Enderton p. 43. (Contributed by NM, 22-May-1998)

Ref Expression
Assertion funfv2 ( Fun 𝐹 → ( 𝐹𝐴 ) = { 𝑦𝐴 𝐹 𝑦 } )

Proof

Step Hyp Ref Expression
1 funfv ( Fun 𝐹 → ( 𝐹𝐴 ) = ( 𝐹 “ { 𝐴 } ) )
2 funrel ( Fun 𝐹 → Rel 𝐹 )
3 relimasn ( Rel 𝐹 → ( 𝐹 “ { 𝐴 } ) = { 𝑦𝐴 𝐹 𝑦 } )
4 2 3 syl ( Fun 𝐹 → ( 𝐹 “ { 𝐴 } ) = { 𝑦𝐴 𝐹 𝑦 } )
5 4 unieqd ( Fun 𝐹 ( 𝐹 “ { 𝐴 } ) = { 𝑦𝐴 𝐹 𝑦 } )
6 1 5 eqtrd ( Fun 𝐹 → ( 𝐹𝐴 ) = { 𝑦𝐴 𝐹 𝑦 } )