Metamath Proof Explorer


Theorem funfv2f

Description: The value of a function. Version of funfv2 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006)

Ref Expression
Hypotheses funfv2f.1 𝑦 𝐴
funfv2f.2 𝑦 𝐹
Assertion funfv2f ( Fun 𝐹 → ( 𝐹𝐴 ) = { 𝑦𝐴 𝐹 𝑦 } )

Proof

Step Hyp Ref Expression
1 funfv2f.1 𝑦 𝐴
2 funfv2f.2 𝑦 𝐹
3 funfv2 ( Fun 𝐹 → ( 𝐹𝐴 ) = { 𝑤𝐴 𝐹 𝑤 } )
4 nfcv 𝑦 𝑤
5 1 2 4 nfbr 𝑦 𝐴 𝐹 𝑤
6 nfv 𝑤 𝐴 𝐹 𝑦
7 breq2 ( 𝑤 = 𝑦 → ( 𝐴 𝐹 𝑤𝐴 𝐹 𝑦 ) )
8 5 6 7 cbvabw { 𝑤𝐴 𝐹 𝑤 } = { 𝑦𝐴 𝐹 𝑦 }
9 8 unieqi { 𝑤𝐴 𝐹 𝑤 } = { 𝑦𝐴 𝐹 𝑦 }
10 3 9 eqtrdi ( Fun 𝐹 → ( 𝐹𝐴 ) = { 𝑦𝐴 𝐹 𝑦 } )