Description: The value of a function. Version of funfv2 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funfv2f.1 | ⊢ Ⅎ 𝑦 𝐴 | |
funfv2f.2 | ⊢ Ⅎ 𝑦 𝐹 | ||
Assertion | funfv2f | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑦 ∣ 𝐴 𝐹 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv2f.1 | ⊢ Ⅎ 𝑦 𝐴 | |
2 | funfv2f.2 | ⊢ Ⅎ 𝑦 𝐹 | |
3 | funfv2 | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑤 ∣ 𝐴 𝐹 𝑤 } ) | |
4 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
5 | 1 2 4 | nfbr | ⊢ Ⅎ 𝑦 𝐴 𝐹 𝑤 |
6 | nfv | ⊢ Ⅎ 𝑤 𝐴 𝐹 𝑦 | |
7 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝐴 𝐹 𝑤 ↔ 𝐴 𝐹 𝑦 ) ) | |
8 | 5 6 7 | cbvabw | ⊢ { 𝑤 ∣ 𝐴 𝐹 𝑤 } = { 𝑦 ∣ 𝐴 𝐹 𝑦 } |
9 | 8 | unieqi | ⊢ ∪ { 𝑤 ∣ 𝐴 𝐹 𝑤 } = ∪ { 𝑦 ∣ 𝐴 𝐹 𝑦 } |
10 | 3 9 | eqtrdi | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑦 ∣ 𝐴 𝐹 𝑦 } ) |