Description: The value of a function. Version of funfv2 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funfv2f.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| funfv2f.2 | ⊢ Ⅎ 𝑦 𝐹 | ||
| Assertion | funfv2f | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑦 ∣ 𝐴 𝐹 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfv2f.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | funfv2f.2 | ⊢ Ⅎ 𝑦 𝐹 | |
| 3 | funfv2 | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑤 ∣ 𝐴 𝐹 𝑤 } ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 5 | 1 2 4 | nfbr | ⊢ Ⅎ 𝑦 𝐴 𝐹 𝑤 |
| 6 | nfv | ⊢ Ⅎ 𝑤 𝐴 𝐹 𝑦 | |
| 7 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝐴 𝐹 𝑤 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 8 | 5 6 7 | cbvabw | ⊢ { 𝑤 ∣ 𝐴 𝐹 𝑤 } = { 𝑦 ∣ 𝐴 𝐹 𝑦 } |
| 9 | 8 | unieqi | ⊢ ∪ { 𝑤 ∣ 𝐴 𝐹 𝑤 } = ∪ { 𝑦 ∣ 𝐴 𝐹 𝑦 } |
| 10 | 3 9 | eqtrdi | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑦 ∣ 𝐴 𝐹 𝑦 } ) |