Description: Two ways to say that A is in the domain of F . (Contributed by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | funfvbrb | ⊢ ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) | |
2 | df-br | ⊢ ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) | |
3 | 1 2 | sylibr | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
4 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
5 | releldm | ⊢ ( ( Rel 𝐹 ∧ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝐹 ) | |
6 | 4 5 | sylan | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝐹 ) |
7 | 3 6 | impbida | ⊢ ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |