Metamath Proof Explorer


Theorem funfvima2

Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997)

Ref Expression
Assertion funfvima2 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐵𝐴 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 funfvima ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → ( 𝐵𝐴 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐴 ) ) )
2 1 ex ( Fun 𝐹 → ( 𝐵 ∈ dom 𝐹 → ( 𝐵𝐴 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐴 ) ) ) )
3 2 com23 ( Fun 𝐹 → ( 𝐵𝐴 → ( 𝐵 ∈ dom 𝐹 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐴 ) ) ) )
4 3 a2d ( Fun 𝐹 → ( ( 𝐵𝐴𝐵 ∈ dom 𝐹 ) → ( 𝐵𝐴 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐴 ) ) ) )
5 ssel ( 𝐴 ⊆ dom 𝐹 → ( 𝐵𝐴𝐵 ∈ dom 𝐹 ) )
6 4 5 impel ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐵𝐴 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐴 ) ) )