Metamath Proof Explorer
		
		
		
		Description:  A function's value in a preimage belongs to the image.  (Contributed by Stanislas Polu, 9-Mar-2020)  (Revised by AV, 23-Mar-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | funfvima2d.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
				
					|  | Assertion | funfvima2d | ⊢  ( ( 𝜑  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfvima2d.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 | 1 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 3 |  | ssidd | ⊢ ( 𝜑  →  𝐴  ⊆  𝐴 ) | 
						
							| 4 | 1 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 5 | 3 4 | sseqtrrd | ⊢ ( 𝜑  →  𝐴  ⊆  dom  𝐹 ) | 
						
							| 6 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝑋  ∈  𝐴  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 7 | 2 5 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐴  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐴 ) ) |