Metamath Proof Explorer


Theorem funfvima2d

Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypothesis funfvima2d.1 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion funfvima2d ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) ∈ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 funfvima2d.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 1 ffund ( 𝜑 → Fun 𝐹 )
3 ssidd ( 𝜑𝐴𝐴 )
4 1 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
5 3 4 sseqtrrd ( 𝜑𝐴 ⊆ dom 𝐹 )
6 funfvima2 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝑋𝐴 → ( 𝐹𝑋 ) ∈ ( 𝐹𝐴 ) ) )
7 2 5 6 syl2anc ( 𝜑 → ( 𝑋𝐴 → ( 𝐹𝑋 ) ∈ ( 𝐹𝐴 ) ) )
8 7 imp ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) ∈ ( 𝐹𝐴 ) )