Metamath Proof Explorer
Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by AV, 23-Mar-2024)
|
|
Ref |
Expression |
|
Hypothesis |
funfvima2d.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
funfvima2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
funfvima2d.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
3 |
|
ssidd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐴 ) |
4 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
5 |
3 4
|
sseqtrrd |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
6 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝑋 ∈ 𝐴 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
8 |
7
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐴 ) ) |