Description: The identity relation is a function. Part of Theorem 10.4 of Quine p. 65. See also idfn . (Contributed by NM, 30-Apr-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funi | ⊢ Fun I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli | ⊢ Rel I | |
| 2 | relcnv | ⊢ Rel ◡ I | |
| 3 | coi2 | ⊢ ( Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
| 4 | 2 3 | ax-mp | ⊢ ( I ∘ ◡ I ) = ◡ I |
| 5 | cnvi | ⊢ ◡ I = I | |
| 6 | 4 5 | eqtri | ⊢ ( I ∘ ◡ I ) = I |
| 7 | 6 | eqimssi | ⊢ ( I ∘ ◡ I ) ⊆ I |
| 8 | df-fun | ⊢ ( Fun I ↔ ( Rel I ∧ ( I ∘ ◡ I ) ⊆ I ) ) | |
| 9 | 1 7 8 | mpbir2an | ⊢ Fun I |