Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
⊢ ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) = ran ( 𝐹 ↾ ( ◡ 𝐹 “ 𝐴 ) ) |
2 |
|
funcnvres2 |
⊢ ( Fun 𝐹 → ◡ ( ◡ 𝐹 ↾ 𝐴 ) = ( 𝐹 ↾ ( ◡ 𝐹 “ 𝐴 ) ) ) |
3 |
2
|
rneqd |
⊢ ( Fun 𝐹 → ran ◡ ( ◡ 𝐹 ↾ 𝐴 ) = ran ( 𝐹 ↾ ( ◡ 𝐹 “ 𝐴 ) ) ) |
4 |
1 3
|
eqtr4id |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) = ran ◡ ( ◡ 𝐹 ↾ 𝐴 ) ) |
5 |
|
df-rn |
⊢ ran 𝐹 = dom ◡ 𝐹 |
6 |
5
|
ineq2i |
⊢ ( 𝐴 ∩ ran 𝐹 ) = ( 𝐴 ∩ dom ◡ 𝐹 ) |
7 |
|
dmres |
⊢ dom ( ◡ 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom ◡ 𝐹 ) |
8 |
|
dfdm4 |
⊢ dom ( ◡ 𝐹 ↾ 𝐴 ) = ran ◡ ( ◡ 𝐹 ↾ 𝐴 ) |
9 |
6 7 8
|
3eqtr2ri |
⊢ ran ◡ ( ◡ 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ ran 𝐹 ) |
10 |
4 9
|
eqtrdi |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) = ( 𝐴 ∩ ran 𝐹 ) ) |