| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funimaeq.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							funimaeq.f | 
							⊢ ( 𝜑  →  Fun  𝐹 )  | 
						
						
							| 3 | 
							
								
							 | 
							funimaeq.g | 
							⊢ ( 𝜑  →  Fun  𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							funimaeq.a | 
							⊢ ( 𝜑  →  𝐴  ⊆  dom  𝐹 )  | 
						
						
							| 5 | 
							
								
							 | 
							funimaeq.d | 
							⊢ ( 𝜑  →  𝐴  ⊆  dom  𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							funimaeq.e | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							funfnd | 
							⊢ ( 𝜑  →  𝐺  Fn  dom  𝐺 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐺  Fn  dom  𝐺 )  | 
						
						
							| 9 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  dom  𝐺 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							fnfvima | 
							⊢ ( ( 𝐺  Fn  dom  𝐺  ∧  𝐴  ⊆  dom  𝐺  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝐺  “  𝐴 ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝐺  “  𝐴 ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐺  “  𝐴 ) )  | 
						
						
							| 14 | 
							
								1 2 13
							 | 
							funimassd | 
							⊢ ( 𝜑  →  ( 𝐹  “  𝐴 )  ⊆  ( 𝐺  “  𝐴 ) )  | 
						
						
							| 15 | 
							
								2
							 | 
							funfnd | 
							⊢ ( 𝜑  →  𝐹  Fn  dom  𝐹 )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹  Fn  dom  𝐹 )  | 
						
						
							| 17 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  dom  𝐹 )  | 
						
						
							| 18 | 
							
								
							 | 
							fnfvima | 
							⊢ ( ( 𝐹  Fn  dom  𝐹  ∧  𝐴  ⊆  dom  𝐹  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 19 | 
							
								16 17 10 18
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 20 | 
							
								6 19
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 21 | 
							
								1 3 20
							 | 
							funimassd | 
							⊢ ( 𝜑  →  ( 𝐺  “  𝐴 )  ⊆  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							eqssd | 
							⊢ ( 𝜑  →  ( 𝐹  “  𝐴 )  =  ( 𝐺  “  𝐴 ) )  |