Metamath Proof Explorer


Theorem funimaex

Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep . Axiom 39(vi) of Quine p. 284. Compare Exercise 9 of TakeutiZaring p. 29. (Contributed by NM, 17-Nov-2002)

Ref Expression
Hypothesis zfrep5.1 𝐵 ∈ V
Assertion funimaex ( Fun 𝐴 → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 zfrep5.1 𝐵 ∈ V
2 funimaexg ( ( Fun 𝐴𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
3 1 2 mpan2 ( Fun 𝐴 → ( 𝐴𝐵 ) ∈ V )