Metamath Proof Explorer


Theorem funimaexg

Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of Quine p. 284. Compare Exercise 9 of TakeutiZaring p. 29. (Contributed by NM, 10-Sep-2006) Shorten proof and avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024)

Ref Expression
Assertion funimaexg ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 dffun6 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) )
2 1 simprbi ( Fun 𝐴 → ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 )
3 dfima2 ( 𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐵 𝑥 𝐴 𝑦 }
4 axrep6g ( ( 𝐵𝐶 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) → { 𝑦 ∣ ∃ 𝑥𝐵 𝑥 𝐴 𝑦 } ∈ V )
5 3 4 eqeltrid ( ( 𝐵𝐶 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) → ( 𝐴𝐵 ) ∈ V )
6 2 5 sylan2 ( ( 𝐵𝐶 ∧ Fun 𝐴 ) → ( 𝐴𝐵 ) ∈ V )
7 6 ancoms ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )