Step |
Hyp |
Ref |
Expression |
1 |
|
imaeq2 |
⊢ ( 𝑤 = 𝐵 → ( 𝐴 “ 𝑤 ) = ( 𝐴 “ 𝐵 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝐴 “ 𝑤 ) ∈ V ↔ ( 𝐴 “ 𝐵 ) ∈ V ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( Fun 𝐴 → ( 𝐴 “ 𝑤 ) ∈ V ) ↔ ( Fun 𝐴 → ( 𝐴 “ 𝐵 ) ∈ V ) ) ) |
4 |
|
dffun5 |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 = 𝑧 ) ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑧 〈 𝑥 , 𝑦 〉 ∈ 𝐴 |
6 |
5
|
axrep4 |
⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
7 |
|
isset |
⊢ ( ( 𝐴 “ 𝑤 ) ∈ V ↔ ∃ 𝑧 𝑧 = ( 𝐴 “ 𝑤 ) ) |
8 |
|
dfima3 |
⊢ ( 𝐴 “ 𝑤 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } |
9 |
8
|
eqeq2i |
⊢ ( 𝑧 = ( 𝐴 “ 𝑤 ) ↔ 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } ) |
10 |
|
abeq2 |
⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
11 |
9 10
|
bitri |
⊢ ( 𝑧 = ( 𝐴 “ 𝑤 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑧 𝑧 = ( 𝐴 “ 𝑤 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
13 |
7 12
|
bitri |
⊢ ( ( 𝐴 “ 𝑤 ) ∈ V ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
14 |
6 13
|
sylibr |
⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 = 𝑧 ) → ( 𝐴 “ 𝑤 ) ∈ V ) |
15 |
4 14
|
simplbiim |
⊢ ( Fun 𝐴 → ( 𝐴 “ 𝑤 ) ∈ V ) |
16 |
3 15
|
vtoclg |
⊢ ( 𝐵 ∈ 𝐶 → ( Fun 𝐴 → ( 𝐴 “ 𝐵 ) ∈ V ) ) |
17 |
16
|
impcom |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 “ 𝐵 ) ∈ V ) |