Metamath Proof Explorer


Theorem funimaexg

Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of Quine p. 284. Compare Exercise 9 of TakeutiZaring p. 29. (Contributed by NM, 10-Sep-2006)

Ref Expression
Assertion funimaexg ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 imaeq2 ( 𝑤 = 𝐵 → ( 𝐴𝑤 ) = ( 𝐴𝐵 ) )
2 1 eleq1d ( 𝑤 = 𝐵 → ( ( 𝐴𝑤 ) ∈ V ↔ ( 𝐴𝐵 ) ∈ V ) )
3 2 imbi2d ( 𝑤 = 𝐵 → ( ( Fun 𝐴 → ( 𝐴𝑤 ) ∈ V ) ↔ ( Fun 𝐴 → ( 𝐴𝐵 ) ∈ V ) ) )
4 dffun5 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑧𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑦 = 𝑧 ) ) )
5 nfv 𝑧𝑥 , 𝑦 ⟩ ∈ 𝐴
6 5 axrep4 ( ∀ 𝑥𝑧𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑦 = 𝑧 ) → ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ) )
7 isset ( ( 𝐴𝑤 ) ∈ V ↔ ∃ 𝑧 𝑧 = ( 𝐴𝑤 ) )
8 dfima3 ( 𝐴𝑤 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) }
9 8 eqeq2i ( 𝑧 = ( 𝐴𝑤 ) ↔ 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) } )
10 abeq2 ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) } ↔ ∀ 𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ) )
11 9 10 bitri ( 𝑧 = ( 𝐴𝑤 ) ↔ ∀ 𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ) )
12 11 exbii ( ∃ 𝑧 𝑧 = ( 𝐴𝑤 ) ↔ ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ) )
13 7 12 bitri ( ( 𝐴𝑤 ) ∈ V ↔ ∃ 𝑧𝑦 ( 𝑦𝑧 ↔ ∃ 𝑥 ( 𝑥𝑤 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ) )
14 6 13 sylibr ( ∀ 𝑥𝑧𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑦 = 𝑧 ) → ( 𝐴𝑤 ) ∈ V )
15 4 14 simplbiim ( Fun 𝐴 → ( 𝐴𝑤 ) ∈ V )
16 3 15 vtoclg ( 𝐵𝐶 → ( Fun 𝐴 → ( 𝐴𝐵 ) ∈ V ) )
17 16 impcom ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )