| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imaeq2 | ⊢ ( 𝑤  =  𝐵  →  ( 𝐴  “  𝑤 )  =  ( 𝐴  “  𝐵 ) ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑤  =  𝐵  →  ( ( 𝐴  “  𝑤 )  ∈  V  ↔  ( 𝐴  “  𝐵 )  ∈  V ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑤  =  𝐵  →  ( ( Fun  𝐴  →  ( 𝐴  “  𝑤 )  ∈  V )  ↔  ( Fun  𝐴  →  ( 𝐴  “  𝐵 )  ∈  V ) ) ) | 
						
							| 4 |  | dffun5 | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  𝐴  →  𝑦  =  𝑧 ) ) ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑧 〈 𝑥 ,  𝑦 〉  ∈  𝐴 | 
						
							| 6 | 5 | axrep4 | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  𝐴  →  𝑦  =  𝑧 )  →  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) ) ) | 
						
							| 7 |  | isset | ⊢ ( ( 𝐴  “  𝑤 )  ∈  V  ↔  ∃ 𝑧 𝑧  =  ( 𝐴  “  𝑤 ) ) | 
						
							| 8 |  | dfima3 | ⊢ ( 𝐴  “  𝑤 )  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) } | 
						
							| 9 | 8 | eqeq2i | ⊢ ( 𝑧  =  ( 𝐴  “  𝑤 )  ↔  𝑧  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) } ) | 
						
							| 10 |  | eqabb | ⊢ ( 𝑧  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) }  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( 𝑧  =  ( 𝐴  “  𝑤 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) ) ) | 
						
							| 12 | 11 | exbii | ⊢ ( ∃ 𝑧 𝑧  =  ( 𝐴  “  𝑤 )  ↔  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) ) ) | 
						
							| 13 | 7 12 | bitri | ⊢ ( ( 𝐴  “  𝑤 )  ∈  V  ↔  ∃ 𝑧 ∀ 𝑦 ( 𝑦  ∈  𝑧  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝐴 ) ) ) | 
						
							| 14 | 6 13 | sylibr | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  𝐴  →  𝑦  =  𝑧 )  →  ( 𝐴  “  𝑤 )  ∈  V ) | 
						
							| 15 | 4 14 | simplbiim | ⊢ ( Fun  𝐴  →  ( 𝐴  “  𝑤 )  ∈  V ) | 
						
							| 16 | 3 15 | vtoclg | ⊢ ( 𝐵  ∈  𝐶  →  ( Fun  𝐴  →  ( 𝐴  “  𝐵 )  ∈  V ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  “  𝐵 )  ∈  V ) |