Metamath Proof Explorer


Theorem funimass4

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion funimass4 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( ( 𝐹𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐹𝐴 ) → 𝑦𝐵 ) )
2 vex 𝑦 ∈ V
3 2 elima ( 𝑦 ∈ ( 𝐹𝐴 ) ↔ ∃ 𝑥𝐴 𝑥 𝐹 𝑦 )
4 eqcom ( 𝑦 = ( 𝐹𝑥 ) ↔ ( 𝐹𝑥 ) = 𝑦 )
5 ssel ( 𝐴 ⊆ dom 𝐹 → ( 𝑥𝐴𝑥 ∈ dom 𝐹 ) )
6 funbrfvb ( ( Fun 𝐹𝑥 ∈ dom 𝐹 ) → ( ( 𝐹𝑥 ) = 𝑦𝑥 𝐹 𝑦 ) )
7 6 ex ( Fun 𝐹 → ( 𝑥 ∈ dom 𝐹 → ( ( 𝐹𝑥 ) = 𝑦𝑥 𝐹 𝑦 ) ) )
8 5 7 syl9 ( 𝐴 ⊆ dom 𝐹 → ( Fun 𝐹 → ( 𝑥𝐴 → ( ( 𝐹𝑥 ) = 𝑦𝑥 𝐹 𝑦 ) ) ) )
9 8 imp31 ( ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 𝑦𝑥 𝐹 𝑦 ) )
10 4 9 bitrid ( ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥𝐴 ) → ( 𝑦 = ( 𝐹𝑥 ) ↔ 𝑥 𝐹 𝑦 ) )
11 10 rexbidva ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐴 𝑥 𝐹 𝑦 ) )
12 3 11 bitr4id ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐹𝐴 ) ↔ ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) ) )
13 12 imbi1d ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝑦 ∈ ( 𝐹𝐴 ) → 𝑦𝐵 ) ↔ ( ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ) )
14 r19.23v ( ∀ 𝑥𝐴 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ↔ ( ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) )
15 13 14 bitr4di ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝑦 ∈ ( 𝐹𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ) )
16 15 albidv ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐹𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ) )
17 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) )
18 fvex ( 𝐹𝑥 ) ∈ V
19 eleq1 ( 𝑦 = ( 𝐹𝑥 ) → ( 𝑦𝐵 ↔ ( 𝐹𝑥 ) ∈ 𝐵 ) )
20 18 19 ceqsalv ( ∀ 𝑦 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ↔ ( 𝐹𝑥 ) ∈ 𝐵 )
21 20 ralbii ( ∀ 𝑥𝐴𝑦 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 )
22 17 21 bitr3i ( ∀ 𝑦𝑥𝐴 ( 𝑦 = ( 𝐹𝑥 ) → 𝑦𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 )
23 16 22 bitrdi ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐹𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
24 1 23 bitrid ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
25 24 ancoms ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )