Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
2
|
elima |
⊢ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) |
4 |
|
eqcom |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
5 |
|
ssel |
⊢ ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹 ) ) |
6 |
|
funbrfvb |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
7 |
6
|
ex |
⊢ ( Fun 𝐹 → ( 𝑥 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) |
8 |
5 7
|
syl9 |
⊢ ( 𝐴 ⊆ dom 𝐹 → ( Fun 𝐹 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) ) |
9 |
8
|
imp31 |
⊢ ( ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
10 |
4 9
|
syl5bb |
⊢ ( ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 𝐹 𝑦 ) ) |
11 |
10
|
rexbidva |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
12 |
3 11
|
bitr4id |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
14 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
15 |
13 14
|
bitr4di |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
16 |
15
|
albidv |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
17 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
18 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
19 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
20 |
18 19
|
ceqsalv |
⊢ ( ∀ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
21 |
20
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
22 |
17 21
|
bitr3i |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
23 |
16 22
|
bitrdi |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
24 |
1 23
|
syl5bb |
⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
25 |
24
|
ancoms |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |