Step |
Hyp |
Ref |
Expression |
1 |
|
funimass4f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
funimass4f.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
funimass4f.3 |
⊢ Ⅎ 𝑥 𝐹 |
4 |
3
|
nffun |
⊢ Ⅎ 𝑥 Fun 𝐹 |
5 |
3
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
6 |
1 5
|
nfss |
⊢ Ⅎ 𝑥 𝐴 ⊆ dom 𝐹 |
7 |
4 6
|
nfan |
⊢ Ⅎ 𝑥 ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) |
8 |
3 1
|
nfima |
⊢ Ⅎ 𝑥 ( 𝐹 “ 𝐴 ) |
9 |
8 2
|
nfss |
⊢ Ⅎ 𝑥 ( 𝐹 “ 𝐴 ) ⊆ 𝐵 |
10 |
7 9
|
nfan |
⊢ Ⅎ 𝑥 ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
11 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
12 |
|
ssel |
⊢ ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
13 |
11 12
|
sylan9 |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
14 |
10 13
|
ralrimi |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
15 |
1 3
|
dfimafnf |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
16 |
15
|
adantr |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
17 |
2
|
abrexss |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐵 ) |
18 |
17
|
adantl |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐵 ) |
19 |
16 18
|
eqsstrd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
20 |
14 19
|
impbida |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |