Metamath Proof Explorer


Theorem funimass5

Description: A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007)

Ref Expression
Assertion funimass5 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐴 ⊆ ( 𝐹𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 funimass3 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ 𝐵𝐴 ⊆ ( 𝐹𝐵 ) ) )
2 funimass4 ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
3 1 2 bitr3d ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐴 ⊆ ( 𝐹𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )