Metamath Proof Explorer


Theorem funiun

Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020)

Ref Expression
Assertion funiun ( Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹 { ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ } )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 dffn5 ( 𝐹 Fn dom 𝐹𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹𝑥 ) ) )
3 1 2 sylbb ( Fun 𝐹𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹𝑥 ) ) )
4 fvex ( 𝐹𝑥 ) ∈ V
5 4 dfmpt ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹𝑥 ) ) = 𝑥 ∈ dom 𝐹 { ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ }
6 3 5 eqtrdi ( Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹 { ⟨ 𝑥 , ( 𝐹𝑥 ) ⟩ } )