Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | funiun | ⊢ ( Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹 { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
2 | dffn5 | ⊢ ( 𝐹 Fn dom 𝐹 ↔ 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
3 | 1 2 | sylbb | ⊢ ( Fun 𝐹 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
4 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
5 | 4 | dfmpt | ⊢ ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) = ∪ 𝑥 ∈ dom 𝐹 { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } |
6 | 3 5 | eqtrdi | ⊢ ( Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹 { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |