| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffun6 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 2 |
1
|
simplbi |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
| 3 |
|
brrelex1 |
⊢ ( ( Rel 𝐹 ∧ 𝐴 𝐹 𝑦 ) → 𝐴 ∈ V ) |
| 4 |
3
|
ex |
⊢ ( Rel 𝐹 → ( 𝐴 𝐹 𝑦 → 𝐴 ∈ V ) ) |
| 5 |
2 4
|
syl |
⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝑦 → 𝐴 ∈ V ) ) |
| 6 |
5
|
ancrd |
⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) ) |
| 7 |
6
|
alrimiv |
⊢ ( Fun 𝐹 → ∀ 𝑦 ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
| 9 |
8
|
mobidv |
⊢ ( 𝑥 = 𝐴 → ( ∃* 𝑦 𝑥 𝐹 𝑦 ↔ ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( Fun 𝐹 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ↔ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) ) |
| 11 |
1
|
simprbi |
⊢ ( Fun 𝐹 → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 12 |
11
|
19.21bi |
⊢ ( Fun 𝐹 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 13 |
10 12
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 14 |
13
|
com12 |
⊢ ( Fun 𝐹 → ( 𝐴 ∈ V → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 15 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ↔ ( 𝐴 ∈ V → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 16 |
14 15
|
sylibr |
⊢ ( Fun 𝐹 → ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) |
| 17 |
|
moim |
⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) → ( ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 18 |
7 16 17
|
sylc |
⊢ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) |