Metamath Proof Explorer


Theorem funmpt

Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Assertion funmpt Fun ( 𝑥𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 funopab4 Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
2 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
3 2 funeqi ( Fun ( 𝑥𝐴𝐵 ) ↔ Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } )
4 1 3 mpbir Fun ( 𝑥𝐴𝐵 )