Metamath Proof Explorer


Theorem funopab4

Description: A class of ordered pairs of values in the form used by df-mpt is a function. (Contributed by NM, 17-Feb-2013)

Ref Expression
Assertion funopab4 Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐴 ) }

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜑𝑦 = 𝐴 ) → 𝑦 = 𝐴 )
2 1 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐴 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 }
3 funopabeq Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 }
4 funss ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐴 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 } → ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 } → Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐴 ) } ) )
5 2 3 4 mp2 Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐴 ) }