Metamath Proof Explorer


Theorem funopabeq

Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995)

Ref Expression
Assertion funopabeq Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 }

Proof

Step Hyp Ref Expression
1 funopab ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 } ↔ ∀ 𝑥 ∃* 𝑦 𝑦 = 𝐴 )
2 moeq ∃* 𝑦 𝑦 = 𝐴
3 1 2 mpgbir Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝐴 }