Metamath Proof Explorer


Theorem funopdmsn

Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021) (Avoid depending on this detail.)

Ref Expression
Hypotheses funopdmsn.g 𝐺 = ⟨ 𝑋 , 𝑌
funopdmsn.x 𝑋𝑉
funopdmsn.y 𝑌𝑊
Assertion funopdmsn ( ( Fun 𝐺𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 funopdmsn.g 𝐺 = ⟨ 𝑋 , 𝑌
2 funopdmsn.x 𝑋𝑉
3 funopdmsn.y 𝑌𝑊
4 1 funeqi ( Fun 𝐺 ↔ Fun ⟨ 𝑋 , 𝑌 ⟩ )
5 2 elexi 𝑋 ∈ V
6 3 elexi 𝑌 ∈ V
7 5 6 funop ( Fun ⟨ 𝑋 , 𝑌 ⟩ ↔ ∃ 𝑥 ( 𝑋 = { 𝑥 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑥 , 𝑥 ⟩ } ) )
8 4 7 bitri ( Fun 𝐺 ↔ ∃ 𝑥 ( 𝑋 = { 𝑥 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑥 , 𝑥 ⟩ } ) )
9 1 eqcomi 𝑋 , 𝑌 ⟩ = 𝐺
10 9 eqeq1i ( ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑥 , 𝑥 ⟩ } ↔ 𝐺 = { ⟨ 𝑥 , 𝑥 ⟩ } )
11 dmeq ( 𝐺 = { ⟨ 𝑥 , 𝑥 ⟩ } → dom 𝐺 = dom { ⟨ 𝑥 , 𝑥 ⟩ } )
12 vex 𝑥 ∈ V
13 12 dmsnop dom { ⟨ 𝑥 , 𝑥 ⟩ } = { 𝑥 }
14 11 13 eqtrdi ( 𝐺 = { ⟨ 𝑥 , 𝑥 ⟩ } → dom 𝐺 = { 𝑥 } )
15 eleq2 ( dom 𝐺 = { 𝑥 } → ( 𝐴 ∈ dom 𝐺𝐴 ∈ { 𝑥 } ) )
16 eleq2 ( dom 𝐺 = { 𝑥 } → ( 𝐵 ∈ dom 𝐺𝐵 ∈ { 𝑥 } ) )
17 15 16 anbi12d ( dom 𝐺 = { 𝑥 } → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) ↔ ( 𝐴 ∈ { 𝑥 } ∧ 𝐵 ∈ { 𝑥 } ) ) )
18 elsni ( 𝐴 ∈ { 𝑥 } → 𝐴 = 𝑥 )
19 elsni ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 )
20 eqtr3 ( ( 𝐴 = 𝑥𝐵 = 𝑥 ) → 𝐴 = 𝐵 )
21 18 19 20 syl2an ( ( 𝐴 ∈ { 𝑥 } ∧ 𝐵 ∈ { 𝑥 } ) → 𝐴 = 𝐵 )
22 17 21 syl6bi ( dom 𝐺 = { 𝑥 } → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 ) )
23 14 22 syl ( 𝐺 = { ⟨ 𝑥 , 𝑥 ⟩ } → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 ) )
24 10 23 sylbi ( ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑥 , 𝑥 ⟩ } → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 ) )
25 24 adantl ( ( 𝑋 = { 𝑥 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑥 , 𝑥 ⟩ } ) → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 ) )
26 25 exlimiv ( ∃ 𝑥 ( 𝑋 = { 𝑥 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑥 , 𝑥 ⟩ } ) → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 ) )
27 8 26 sylbi ( Fun 𝐺 → ( ( 𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 ) )
28 27 3impib ( ( Fun 𝐺𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺 ) → 𝐴 = 𝐵 )