Metamath Proof Explorer


Theorem funopfvb

Description: Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of Monk1 p. 42. (Contributed by NM, 26-Jan-1997)

Ref Expression
Assertion funopfvb ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 fnopfvb ( ( 𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )
3 1 2 sylanb ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )