Description: Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of Monk1 p. 42. (Contributed by NM, 26-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | funopfvb | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
2 | fnopfvb | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) | |
3 | 1 2 | sylanb | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |