Metamath Proof Explorer


Theorem funoprab

Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypothesis funoprab.1 ∃* 𝑧 𝜑
Assertion funoprab Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 funoprab.1 ∃* 𝑧 𝜑
2 1 gen2 𝑥𝑦 ∃* 𝑧 𝜑
3 funoprabg ( ∀ 𝑥𝑦 ∃* 𝑧 𝜑 → Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } )
4 2 3 ax-mp Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }