Metamath Proof Explorer


Theorem funpr

Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses funpr.1 𝐴 ∈ V
funpr.2 𝐵 ∈ V
funpr.3 𝐶 ∈ V
funpr.4 𝐷 ∈ V
Assertion funpr ( 𝐴𝐵 → Fun { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } )

Proof

Step Hyp Ref Expression
1 funpr.1 𝐴 ∈ V
2 funpr.2 𝐵 ∈ V
3 funpr.3 𝐶 ∈ V
4 funpr.4 𝐷 ∈ V
5 1 2 pm3.2i ( 𝐴 ∈ V ∧ 𝐵 ∈ V )
6 3 4 pm3.2i ( 𝐶 ∈ V ∧ 𝐷 ∈ V )
7 funprg ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ∧ 𝐴𝐵 ) → Fun { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } )
8 5 6 7 mp3an12 ( 𝐴𝐵 → Fun { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } )