Metamath Proof Explorer


Theorem funrel

Description: A function is a relation. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion funrel ( Fun 𝐴 → Rel 𝐴 )

Proof

Step Hyp Ref Expression
1 df-fun ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 𝐴 ) ⊆ I ) )
2 1 simplbi ( Fun 𝐴 → Rel 𝐴 )