Step |
Hyp |
Ref |
Expression |
1 |
|
resundir |
⊢ ( ( 𝐴 ∪ 𝐵 ) ↾ dom 𝐴 ) = ( ( 𝐴 ↾ dom 𝐴 ) ∪ ( 𝐵 ↾ dom 𝐴 ) ) |
2 |
|
resdm |
⊢ ( Rel 𝐴 → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) |
4 |
|
dmres |
⊢ dom ( 𝐵 ↾ dom 𝐴 ) = ( dom 𝐴 ∩ dom 𝐵 ) |
5 |
|
simpr |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) |
6 |
4 5
|
syl5eq |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → dom ( 𝐵 ↾ dom 𝐴 ) = ∅ ) |
7 |
|
relres |
⊢ Rel ( 𝐵 ↾ dom 𝐴 ) |
8 |
|
reldm0 |
⊢ ( Rel ( 𝐵 ↾ dom 𝐴 ) → ( ( 𝐵 ↾ dom 𝐴 ) = ∅ ↔ dom ( 𝐵 ↾ dom 𝐴 ) = ∅ ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( 𝐵 ↾ dom 𝐴 ) = ∅ ↔ dom ( 𝐵 ↾ dom 𝐴 ) = ∅ ) |
10 |
6 9
|
sylibr |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( 𝐵 ↾ dom 𝐴 ) = ∅ ) |
11 |
3 10
|
uneq12d |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ↾ dom 𝐴 ) ∪ ( 𝐵 ↾ dom 𝐴 ) ) = ( 𝐴 ∪ ∅ ) ) |
12 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
13 |
11 12
|
eqtrdi |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ↾ dom 𝐴 ) ∪ ( 𝐵 ↾ dom 𝐴 ) ) = 𝐴 ) |
14 |
1 13
|
syl5eq |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) ↾ dom 𝐴 ) = 𝐴 ) |