| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 2 |
|
fnressn |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 3 |
1 2
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 4 |
|
eqimss |
⊢ ( ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 5 |
3 4
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 6 |
|
disjsn |
⊢ ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹 ) |
| 7 |
|
fnresdisj |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ( 𝐹 ↾ { 𝐵 } ) = ∅ ) ) |
| 8 |
1 7
|
sylbi |
⊢ ( Fun 𝐹 → ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ( 𝐹 ↾ { 𝐵 } ) = ∅ ) ) |
| 9 |
6 8
|
bitr3id |
⊢ ( Fun 𝐹 → ( ¬ 𝐵 ∈ dom 𝐹 ↔ ( 𝐹 ↾ { 𝐵 } ) = ∅ ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) = ∅ ) |
| 11 |
|
0ss |
⊢ ∅ ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } |
| 12 |
10 11
|
eqsstrdi |
⊢ ( ( Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 13 |
5 12
|
pm2.61dan |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝐵 } ) ⊆ { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |