| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funsndifnop.a |
⊢ 𝐴 ∈ V |
| 2 |
|
funsndifnop.b |
⊢ 𝐵 ∈ V |
| 3 |
|
funsndifnop.g |
⊢ 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } |
| 4 |
|
elvv |
⊢ ( 𝐺 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ ) |
| 5 |
1 2
|
funsn |
⊢ Fun { ⟨ 𝐴 , 𝐵 ⟩ } |
| 6 |
|
funeq |
⊢ ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → ( Fun 𝐺 ↔ Fun { ⟨ 𝐴 , 𝐵 ⟩ } ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → Fun 𝐺 ) |
| 8 |
3 7
|
ax-mp |
⊢ Fun 𝐺 |
| 9 |
|
funeq |
⊢ ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( Fun 𝐺 ↔ Fun ⟨ 𝑥 , 𝑦 ⟩ ) ) |
| 10 |
|
vex |
⊢ 𝑥 ∈ V |
| 11 |
|
vex |
⊢ 𝑦 ∈ V |
| 12 |
10 11
|
funop |
⊢ ( Fun ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |
| 13 |
9 12
|
bitrdi |
⊢ ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( Fun 𝐺 ↔ ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) ) |
| 14 |
|
eqeq2 |
⊢ ( ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |
| 15 |
|
eqeq1 |
⊢ ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → ( 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } ↔ { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |
| 16 |
|
opex |
⊢ ⟨ 𝐴 , 𝐵 ⟩ ∈ V |
| 17 |
16
|
sneqr |
⊢ ( { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝑎 , 𝑎 ⟩ } → ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑎 ⟩ ) |
| 18 |
1 2
|
opth |
⊢ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑎 ⟩ ↔ ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑎 ) ) |
| 19 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑎 ) → 𝐴 = 𝐵 ) |
| 20 |
19
|
a1d |
⊢ ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑎 ) → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) |
| 21 |
18 20
|
sylbi |
⊢ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑎 ⟩ → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) |
| 22 |
17 21
|
syl |
⊢ ( { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) |
| 23 |
15 22
|
biimtrdi |
⊢ ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → ( 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) ) |
| 24 |
3 23
|
ax-mp |
⊢ ( 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) |
| 25 |
14 24
|
biimtrdi |
⊢ ( ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) ) |
| 26 |
25
|
com23 |
⊢ ( ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) ) ) |
| 27 |
26
|
impcom |
⊢ ( ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) ) |
| 28 |
27
|
exlimiv |
⊢ ( ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) ) |
| 29 |
28
|
com12 |
⊢ ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → 𝐴 = 𝐵 ) ) |
| 30 |
13 29
|
sylbid |
⊢ ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( Fun 𝐺 → 𝐴 = 𝐵 ) ) |
| 31 |
8 30
|
mpi |
⊢ ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) |
| 32 |
31
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) |
| 33 |
4 32
|
sylbi |
⊢ ( 𝐺 ∈ ( V × V ) → 𝐴 = 𝐵 ) |
| 34 |
33
|
necon3ai |
⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ ( V × V ) ) |