Metamath Proof Explorer


Theorem funsndifnop

Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ }
Assertion funsndifnop ( 𝐴𝐵 → ¬ 𝐺 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 funsndifnop.a 𝐴 ∈ V
2 funsndifnop.b 𝐵 ∈ V
3 funsndifnop.g 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ }
4 elvv ( 𝐺 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ )
5 1 2 funsn Fun { ⟨ 𝐴 , 𝐵 ⟩ }
6 funeq ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → ( Fun 𝐺 ↔ Fun { ⟨ 𝐴 , 𝐵 ⟩ } ) )
7 5 6 mpbiri ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → Fun 𝐺 )
8 3 7 ax-mp Fun 𝐺
9 funeq ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( Fun 𝐺 ↔ Fun ⟨ 𝑥 , 𝑦 ⟩ ) )
10 vex 𝑥 ∈ V
11 vex 𝑦 ∈ V
12 10 11 funop ( Fun ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) )
13 9 12 bitrdi ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( Fun 𝐺 ↔ ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) )
14 eqeq2 ( ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } ) )
15 eqeq1 ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → ( 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } ↔ { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝑎 , 𝑎 ⟩ } ) )
16 opex 𝐴 , 𝐵 ⟩ ∈ V
17 16 sneqr ( { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝑎 , 𝑎 ⟩ } → ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑎 ⟩ )
18 1 2 opth ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑎 ⟩ ↔ ( 𝐴 = 𝑎𝐵 = 𝑎 ) )
19 eqtr3 ( ( 𝐴 = 𝑎𝐵 = 𝑎 ) → 𝐴 = 𝐵 )
20 19 a1d ( ( 𝐴 = 𝑎𝐵 = 𝑎 ) → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) )
21 18 20 sylbi ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑎 ⟩ → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) )
22 17 21 syl ( { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) )
23 15 22 syl6bi ( 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ } → ( 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) )
24 3 23 ax-mp ( 𝐺 = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) )
25 14 24 syl6bi ( ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑥 = { 𝑎 } → 𝐴 = 𝐵 ) ) )
26 25 com23 ( ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( 𝑥 = { 𝑎 } → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) ) )
27 26 impcom ( ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) )
28 27 exlimiv ( ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 ) )
29 28 com12 ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∃ 𝑎 ( 𝑥 = { 𝑎 } ∧ ⟨ 𝑥 , 𝑦 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → 𝐴 = 𝐵 ) )
30 13 29 sylbid ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → ( Fun 𝐺𝐴 = 𝐵 ) )
31 8 30 mpi ( 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 )
32 31 exlimivv ( ∃ 𝑥𝑦 𝐺 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝐵 )
33 4 32 sylbi ( 𝐺 ∈ ( V × V ) → 𝐴 = 𝐵 )
34 33 necon3ai ( 𝐴𝐵 → ¬ 𝐺 ∈ ( V × V ) )